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Abstract

Representation Learning for Patients in the Intensive Care Unit

Emma Rocheteau

The past decade has seen accelerating interest in Artificial Intelligence (AI) in Health-
care. Data is now being generated in the form of Electronic Health Records at a scale
previously unimaginable. Not only does this create opportunities for the application of
AI, but it also drives innovation in the machine learning sphere. This is because health
problems can present unique challenges not encountered in other domains, and clinical
decision making itself can provide ingenious approaches inspiring new learning methods.

The work in this thesis sits in the space between medicine and machine learning and
has contributions to both domains. The broad theme is representation learning for the
patient in intensive care. The eventual aim is to promote better outcomes for patients
and improve the efficiency of the healthcare system. I focus in particular on predicting
patient deaths and estimated dates of discharge, because they lie at the heart of the
resource allocation problem in hospitals. The efficient management of hospital beds is
more important than ever in the wake of staff retention crises, post-pandemic budgets and
ageing populations.

Specifically, in Chapter 3, I use clinical knowledge of the medical time series (namely
that they are periodic signals with particular systematic biases) to improve upon the
state-of-the-art in length of stay prediction (with additional investigations into mortality
prediction). In Chapter 4, I am again inspired by knowledge of the clinical decision making
process to propose a method using graph neural networks to leverage data from similar
patients when predicting outcomes, providing important context for the predictions and
interpretability opportunities. In Chapter 5, I delve further into the representation space,
exploring the effect of auxiliary tasks on the performance of patient outcome models for
mechanically ventilated patients. I then cluster the learned representations with the aim
of discovering hidden patient phenotypes. The vision is ultimately to create robust and
holistic patient representations which are suitable for deployment in the real-world.
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Glossary

ABP Arterial Blood Pressure.

AI Artificial Intelligence; the theory and development of computer systems that are able
to perform tasks normally requiring human intelligence [54].

ALT Alanine Transaminase; formerly known as Serum Glutamic-Pyruvic Transaminase
(SGPT). It is a biomarker of liver damage.

APACHE-IV A popular risk scoring model which is evaluated only once after the first
24 hours of the patient’s stay [136].

ARDS Adult Respiratory Distress Syndrome; when the lungs become severely inflamed
due to an infection or injury and makes breathing difficult.

AST Aspartate Aminotransferase; formerly known as Serum Glutamic-Oxaloacetic Transam-
inase (SGOT). It is a biomarker of liver damage.

AUPRC Area Under the Precision Recall Curve; especially useful when there is significant
imbalance in the test set e.g. only a few positive samples and many more negative
samples.

AUROC Area Under the Receiver Operating Characteristic curve; plots the true positive
rate against the false positive rate at various threshold settings; useful for evaluating
classification algorithms.

BERT Bidirectional Encoder Representations from Transformers [25].

BiLSTM Bidirectional LSTM [40].

BPTT Backpropagation Through Time [91].

BUN Blood Urea Nitrogen; a biomarker of kidney function.

CCS Clinical Classifications Software [27].

CI Confidence Interval.



CNN Convolutional Neural Networks.

CRP C Reactive Protein.

CVP Central Venous Pressure; the pressure in the thoracic vena cava near the right
atrium.

ECG Electrocardigram; a test for the heart’s rhythm and electrical activity.

EHR Electronic Health Record; contains a patient’s medical notes, diagnoses, medications,
allergies, radiology images, laboratory tests etc.

eICU A multi-center ICU database with high granularity data for over 200,000 admissions
to ICUs monitored by eICU Programs across the United States.

FC Fully-Connected; a neural network that connects every neuron in one layer to every
neuron in the next layer.

FiO2 Fraction of inspired Oxygen.

GAT Graph Attention Network; a neural network architecture that operates on graph-
structured data, leveraging masked self-attentional layers to address the shortcomings
of prior methods based on graph convolutions or their approximations..

GCN Graph Convolutional Networks [58].

GNN Graph Neural Network; a neural network architecture that operates on graph-
structured data.

GPT Generative Pre-trained Transformer [78].

GraphSAGE SAmple and aggreGatE [45]; an approach for graph structured data.

IBW Ideal Body Weight; often calculated based on age, height and gender. It can be
used to estimate optimal drug dosages, and also physiological variables such as Tidal
Volume.

ICD International Classification of Diseases; international standard diagnostic tool for
epidemiology, health management and clinical purposes [129].

ICU Intensive Care Unit; department of the hospital typically filled with very sick patients
who require life support.

LoS Length of Stay.



LSTM Long Short-Term Memory; a type of recurrent neural network that summarises
time series data [50].

MAD Mean Absolute Deviation.

MAPE Mean Absolute Percentage Error.

MIMIC Medical Information Mart for Intensive Care; a large, single-center database
comprising information relating to patients admitted to critical care units at a large
tertiary care hospital in the United States.

ML Machine Learning; a subset of AI techniques that allow machines to learn automati-
cally from past data without explicit programming.

MPNN Message Passing Neural Networks [33].

MSE Mean Squared Error.

MSLE Mean Squared Logarithmic Error.

MV Mandatory Ventilation; the mandatory ventilation settings used in this disseration
are defined in Table C.6.

NAFLD Non-Alcoholic Fatty Liver Disease.

NHS National Health Service; the publicly funded healthcare system in the UK.

NLP Natural Language Processing.

OPCS Office of Population Censuses and Surveys [76].

PaO2 The partial pressure of oxygen in arterial blood.

PCOS Polycystic Ovary Syndrome.

PEEP Positive End-Expiratory Pressure; designed to prevent the alveoli from collapsing
on expiration.

PTT Partial Thromboplastin Time; also known as the activated Partial Thromboplastin
Time (aPTT). It measures how long it takes for a clot to form in a blood sample.

RCT Randomised Controlled Trial; where subjects are randomly assigned to either an
experimental group (receiving the intervention that is being tested), or the control
group (receiving the conventional or a placebo treatment).



ReLU Rectified Linear Unit; a type of activation function used in neural networks.

RGB A colour model in which the red, green, and blue primary colours of light are added
together in various ways to reproduce a broad array of colours.

RNN Recurrent Neural Network.

SAH Sub-Arachnoid Haemorrhage; a type of stroke associated with particularly high
mortality in the ICU.

SaO2 Arterial Oxygen Saturation.

TCN Temporal Convolution Networks.

TPC Temporal Pointwise Convolution; a neural network made up of pointwise and
temporal convolution [95].

TV Tidal Volume; the amount of air that moves in or out of the lungs with each respiratory
cycle.

VD Ventilation Duration.

WBC White Blood Cell Count.



CHAPTER 1

Introduction

Over the past decade, we have seen accelerating interest in Artificial Intelligence (AI) for
healthcare. This is reflected in the exponential increase in published research papers [133],
soaring investment into AI startups [102], and year-on-year increases in regulatory approvals
for AI software devices [6]. This is an encouraging prospect at a time when many
healthcare systems including the UK’s National Health Service (NHS) are struggling with
unprecedented demand on services. Acutely, some of the stress is due to the lasting impact
of the COVID-19 pandemic, however, ageing populations and the continual development of
new treatments will ensure that this trend is likely to continue. Looking to the success in
other industries, there is cautious optimism that AI could be part of a long-term solution
to improve the efficiency and personalisation of care, alleviating some of the ever-increasing
burden on services.

1.1 AI, Machine Learning and Deep Learning

Although there is no universally accepted definition, Joiner [54] describes AI as “the theory
and development of computer systems that are able to perform tasks normally requiring
human intelligence, such as visual perception, speech recognition, decision-making, and
translation between languages”. As ‘human intelligence’ is subjective, the resulting field of
AI is dynamic and diverse. Machine Learning (ML) is a more specific term, referring to
a subset of AI techniques that allow machines to learn automatically from data without
explicit programming. However, the learning process may only be partially automated
because the data often requires some degree of feature engineering1 before it is given to
the algorithm (Figure 1.1).

Deep learning is a subset of machine learning that focuses on end-to-end systems
1Feature engineering is the process of using domain knowledge to extract features (characteristics,

properties, attributes) from raw data.
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Figure 1.1: A traditional machine learning vs deep learning approach to pneumonia classification
from X-rays. In this example, the feature engineering process might create low-level features,
such as the contrast or exposure of the X-ray, or high-level features such as the size of the heart
and lungs or percentage consolidation of the lung.

designed to learn from raw data without manual feature engineering. It is synonymous
with a particular type of machine learning model called a neural network (explained in
detail in Section 2.1). Deep learning has shown incredible promise over the past decade;
for example, in identifying objects in images, transcribing speech into text, matching news
items or products with users’ interests, and selecting relevant search results [61]. When
applied to healthcare, I highlight three of its particular strengths:

Scalability to large data sets Once a workflow is established, the incremental cost of
adding data is small, making the system cheaply scalable and easy to keep up to date as
new data becomes available.

Capacity to supersede human performance on specialised tasks Deep learning
is well suited to solving highly specific tasks with quantifiable performance metrics. It
exploits reliable patterns in patient data without getting fatigued.

Automation Deep learning tools may have the biggest impact in situations where there
is significant stress on hospital resources. It has the potential to increase the capacity of a
service by easing the workload demands for highly trained specialists, translating to real
differences in patient outcomes. For example, a reliable speech to text documentation
system for medical notes could increase the number of appointments per clinic.
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1.2 Learning Representations of the Patient

In order to make intelligent predictions in a healthcare setting, we usually need to learn a
representation of the patient. By this we mean finding a low-dimensional transformation
of the original data, such that it could serve as a useful input to a simple predictor or
classifier model. In other words, learning representations is all about finding structure
in the data. Identifying ways in which the data can be meaningfully separated, isolating
invariant properties from noise, or creating interpretable high dimensional objects are all
examples of representation learning problems.

Before deep learning came to the fore, much of the effort in designing machine learning
algorithms would go towards pre-processing pipelines and feature engineering in order to
extract meaningful representations. This was especially true in medicine, where domain
knowledge is absolutely necessary to make sense of the data. As highlighted in the previous
section, a key strength of deep learning is its capability for automatic learning from raw
data. To do this successfully, the model must have enough capacity to represent complex
functions, but also sufficient data to learn the representation. Currently, we are limited
by both the quantity and the quality of Electronic Health Record (EHR) data. It can be
sparse, incomplete, irregularly sampled, and riddled with errors. When faced with such
challenges, learning a good representation relies on careful design of the network such
that it can learn efficiently in spite of these factors. Note that this is a little different to
the approach taken by OpenAI in the GPT model series [78] or by various CNNs trained
on ImageNet [24], where high quality data is cheap. Vast and densely-connected models
are very powerful in these scenarios, but in the context of limited medical data we need
to be more selective with the size and connectivity of the network. That is to say, the
current challenge when designing deep representations for patients is not so much feature
engineering, but rather network engineering.

First of all, let us consider what makes a representation better than another. What
are the desirable qualities? Even more importantly, how can we design learning objectives
to encourage the models to learn ‘good’ representations of the patient? I will address the
first question by outlining some general principles [5]:

Smoothness Similar inputs should produce similar outputs i.e. if x ≈ y then f(x) ≈ f(y).
If the function represented by the network is smooth, then the outputs will be more robust
to noise in the input.

Expressivity A reasonably sized learned representation should be able to capture a
huge number of possible input configurations. For example, there are many possible
manifestations of the same diagnosis which need to be mapped to the same concept.
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Figure 1.2: A multitask example of patient representations, where input features are used to
predict length of stay, mortality and whether the patient has had a tracheostomy. The first layer
creates a shared representation of the input, which allows the model to exploit factors which
are shared between tasks e.g. the health status of various organs. Then there are task-specific
representations, which keep only the components which are relevant for that task e.g. respiratory
factors for the tracheostomy task. Since the representations overlap, the statistical strength can
be shared as the model learns, which aids generalisation.

Sharing explanatory factors With inputs X and a target Y , a subset of factors which
explain the distribution of X, can explain much of Y , given X. Therefore representations
that are useful for P (X) tend to be useful for learning P (Y |X). This is also true when
there are multiple tasks i.e. P (Y |X, task) will be explained by factors which are shared
with other tasks. This explains why semi-supervised, multitask learning, transfer learning
and domain adaption can all lead to more robust representations, because they allow the
sharing of statistical power between them. This concept is shown in Figure 1.2.

Hierarchy Concepts that are useful for describing the world can be defined in terms
of other concepts. Initially we compute ‘low-level’ factors, which could be basic signal
processing factors, but these eventually combine to form ‘high-level’ abstract concepts.
Note that we also see this organisation in sensory processing in the brain.

Manifolds The probability mass of learned representations will become dense in certain
areas which represent different examples of the same concept and sparse in others, where
no general concept exists. A good representation will therefore tend to naturally cluster
itself into a low dimensional space.

Simple dependencies In a good high-level representation, the factors are related to
each other through simple, often linear dependencies. This can be tested by assessing the
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performance of a simple predictor on top of a learned representation.

Deep learning is ideally suited to learning representations. Not only does it have the
capacity to model non-linearities and feature interactions, its organisation into sequential
layers provides a natural opportunity to construct hierarchies and share information
between tasks. Another important property of deep networks is that the number of paths
through the network scales exponentially with the depth. This means there are many ways
in which disparate inputs can map to a similar output. This is the expressivity principle.

The second question that I posed, about how to encourage models to learn useful
representations of the patient, will be addressed in detail throughout this dissertation. I
am strongly guided by the foundational principles outlined above, but in the context of
healthcare I will argue that we can go further to take advantage of what we already know
in clinical medicine. For example, by mimicking aspects of traditional clinical reasoning,
or by leveraging existing knowledge of the data structure, we might be able to engineer
models to improve upon the state-of-the-art.

1.3 Research Questions

Having provided an introduction to representation learning and surveyed the landscape
of challenges that we face, I will now formulate an overall theme and three research
questions that I seek to answer within this dissertation. I have provided a visual summary
in Figure 1.3. The consistent theme is:

Can we improve our representation of the patient using clinical knowledge
about the structure of EHR data in the ICU?

In the scope of this dissertation, I cannot hope to analyse every possible method of
exploiting clinical knowledge to improve representations of the patient. Instead, I aim to
show that the approach has been useful in three separate pieces of work. These research
questions are outlined below:

Q1. Can we use our knowledge of medical time series to design a specialised convolutional
model to improve the performance of patient outcome prediction models?

Q2. Can we leverage data from similar patients to provide additional context to time
series models when making predictions about patient outcomes?

Q3. Can we use auxiliary prediction tasks to guide the representations to reflect the
patient phenotype, trajectory and outcomes, with a view towards uncovering subtypes
of disease?
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My research has focused on addressing challenges in healthcare at the system-level, as
these problems have fewer barriers to implementation, which can lead to greater real-world
impact in the short to medium term. In addressing research questions Q1 and Q2, the
patient outcome predictions (mortality and length of stay) were intended to aid in hospital
bed management rather than clinical decision support. In Section 3.1, the importance of
hospital bed management will be further explained. In addressing Q3, the time series
models were used in an exploratory manner, for example, to discover hidden phenotypes
that could inspire future clinical studies or guide the investigation of targeted treatment
strategies.

While I have focused on problems in healthcare, it is worth noting that the resulting
time series methods could apply to a range of domains beyond healthcare. In fact, by
exploiting the properties of time series data, including periodicity, long-term trends, and
graph structure, my work can aid in better understanding the underlying patterns and
trajectories in diverse fields such as finance markets, energy consumption, social media,
and transportation.

1.4 Thesis Outline

My dissertation follows the structure detailed below. Each contribution chapter involves
developing a new deep learning technique that is useful for extracting a particular patient
representation in the ICU.

• Chapter 2: Theoretical Foundations. Firstly, I review the necessary theoretical
background that underlies the research presented in the contribution chapters. In
particular, I cover recurrent, convolutional and graph neural networks, with reference
to important related works.

• Chapter 3: Temporal Pointwise Convolution. In this chapter, I focus on Q1,
which is concerned with improving the representation of medical time series for
improved performance when predicting patient outcomes. Specifically, I predicted
the mortality risk and remaining length of stay of patients in the ICU by designing
a new model which combined both temporal and pointwise convolution. I used
temporal convolution to extract trends across the time dimension whereas pointwise
convolution specialises in extracting inter-feature relationships. Both of these are
useful when assessing the health status of a patient for the purpose of predicting
outcomes. I was able to improve on the state-of-the-art models. My long term vision
is that automatic mortality and length of stay prediction will enable sophisticated
bed management strategies to streamline the patient journey through ICU, reducing
costs and hospital acquired infections.

22



Length of Stay Mortality Tracheostomy Ventilation
Duration

Patient Graph

Ti
me
Se
rie
s M
od
el

Patient Clustering

Patient Outcome Prediction

Chapter 3: Temporal
Pointwise Convolution

Chapter 5: Dynamic
Outcomes-Based
Clustering

Chapter 4: Graph
Representation

Learning

Figure 1.3: A visual abstract of this dissertation. Chapters 3 and 4 propose new methodologies
to exploit particular data types in the EHR. Chapter 5 clusters patient trajectories in order to
find consistent phenotypes in patients undergoing mechanical ventilation.

• Chapter 4: Graph Representation Learning. In this chapter, I concentrate
on the representation of sparse data in the EHR as outlined in Q2, specifically
information such as diagnosis codes, medications and procedures. I used the diagnoses
as a proof of concept to build a ‘patient graph’ of related patients. We then used
this patient graph along with a graph neural network e.g. Graph Attention Network
(GAT) [123] to predict the mortality risk and length of stay, as in Chapter 3. We
found that representing patients within a neighbourhood or ‘context’ of similar
patients led to slightly improved prediction performance. To my knowledge, this
method of representing the diagnoses had not been done in prior work. Our approach
could be easily extended to medications and treatments – indeed any form of sparse
data that yields a useful neighbourhood of similar patients.

• Chapter 5: Dynamic Outcomes-Based Clustering. In my final contribution
chapter, aimed at Q3, I delve further into patient representations with the goal of
uncovering hidden phenotypic subtypes in the trajectories of patients who underwent
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mechanical ventilation. I encouraged the learned representations (and therefore the
resulting clusters) to reflect the patient phenotype, trajectory and outcomes. I used a
mixture of supervised and unsupervised techniques to achieve this, and I was able to
make use of my previous Temporal Pointwise Convolution architecture developed
in Chapter 3 to improve the representations. I also employed various visualisation
techniques to learn more about the structure of the representation space.

• Chapter 6: Conclusion and Future Directions. Finally, I summarise the
contributions presented in the thesis and discuss future directions for each.

1.5 List of Publications

The research efforts presented in this thesis have led to peer-reviewed publications, which
are listed below (in order of contribution chapters 3, 4, 5):

[95] Rocheteau, E., Liò, P., Hyland, S. (2021). Temporal pointwise convolutional
networks for length of stay prediction in the intensive care unit. Proceedings of the
Conference on Health, Inference, and Learning, CHIL’21. Association for Computing
Machinery. https://dl.acm.org/doi/10.1145/3450439.3451860.

A previous version of the work was selected for an oral presentation at the Machine
Learning for Health (ML4H) Workshop at NeurIPS 2020 and again as a spotlight
talk at the Healthcare Systems, Population Health, and the Role of Health-Tech
(HSYS) Workshop at ICML 2020 [94]. The talk can be seen by clicking on this link.

[119] Tong, C.*, Rocheteau, E.*, Veličković, P., Lane, N., Liò, P. (2022). Predicting
Patient Outcomes with Graph Representation Learning. AI for Disease Surveillance
and Pandemic Intelligence: Intelligent Disease Detection in Action. W3PHAI
2021. Studies in Computational Intelligence, Springer. https://doi.org/10.1007/
978-3-030-93080-6_20.

I presented this work as a spotlight talk at the Health Intelligence (W3PHAI)
Workshop at AAAI 2021 where we were awarded 2nd Runner-Up for Best Short
Paper Award. The talk can be seen by clicking on this link. The work was also
presented by Catherine at the Deep Learning on Graphs Workshop at AAAI 2021.

[96] Rocheteau, E., Bica, I., Liò, P., Ercole, A. (2022). Dynamic Outcomes-Based
Clustering of Disease Trajectory in Mechanically Ventilated Patients. Learning from
Time Series for Health Workshop at NeurIPS 2022. https://openreview.net/pdf?
id=S7FEB6rwc5R.

I also presented this work as a spotlight talk at the AI for Social Good (AI4SG)
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Workshop and the Health Intelligence (W3PHAI) Workshop at AAAI 2023, and
at the latter I was awarded Best Paper. The talk can be seen by clicking on this
link. Finally, I presented as a poster at the Representation Learning for Responsible
Human-Centric AI (R2HCAI) Workshop at AAAI 2023.

I have additionally published the following articles during my PhD years, which do not
relate directly to the work in this dissertation:

[92] Rocheteau, E. (2022). On the role of artificial intelligence in psychiatry. The
British Journal of Psychiatry. https://doi.org/10.1192/bjp.2022.132.

This work won the Eliot Slater Prize in Psychiatry from the Department of Psychiatry
in Cambridge.

[23] Rocheteau, E., Deasy, J., Kohler, K., Stubbs, D., Barbiero, P., Liò, P., Ercole, A.
(2020). Rapid Design and Implementation of a Data-Driven Forecast of ICU Strain
from COVID-19 for Early Surge Planning in England. Intensive Care Medicine
Experimental, 8(2):000267, 73.

I was selected for an oral presentation at the 33rd Annual Congress, ESICM LIVES
2020, this can be viewed here. Note that the full length preprint can be found at
https://www.medrxiv.org/content/10.1101/2020.03.19.20039057.

[93] Rocheteau, E.*, Kim, D.* (2020). Deep Transfer Learning for Automated Diagnosis
of Skin Lesions from Photographs. Machine Learning for Mobile Health (ML4MH)
Workshop at NeurIPS 2020. https://arxiv.org/abs/2011.04475.

I also have the following peer reviewed abstracts accepted for presentations at conferences:

• Rocheteau, E., Deasy, J., Roggeveen, J.F., Ercole, A. (2020). ICUnity: A software
tool to harmonise the MIMIC-III and AmsterdamUMCdb databases. Machine
Learning for Healthcare Conference (MLHC) 2020. https://www.mlforhc.org/

2020accepted-papers.

The talk can be viewed by clicking on this link, and the code can be accessed here.

• Rocheteau, E., Liò, P. (2018) Predicting outcomes in psychiatric disorders using
automated reinforcement learning analysis of Electronic Health Records. 2nd Human
Brain Project Student Conference, Ljubljana, Slovenia.

I won the Best Poster Prize among 49 submissions.

Whenever possible, I have endeavoured to make the source code for my work publicly
available on my GitHub profile: https://github.com/EmmaRocheteau.
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CHAPTER 2

Background

The original inspiration for deep learning came from neuroscience [47]. In the 1980s, early
AI researchers knew that the brain comprised networks of neurons propagating signals
encoded as action potentials. As these biological neural networks were known to underpin
human intelligence, they hypothesised that they could induce intelligent reasoning if they
replicated the basic structure of these networks.

Figure 2.1: A comparison of biological and artificial neural networks. The basic structure
consists of layers of neurons (shown as circles) that are connected together by axons (represented
by arrows with associated ‘weights’ which indicate the strength of the connection between those
neurons). Modified from the original with permission from Laura Dubreuil Vall.

Therefore, the discovery of biological neural networks laid the foundations for deep
learning. The core concept that neurons are connected together in layers is preserved
(Figure 2.1) with some modifications to improve computational efficiency or performance.
Just like in the brain, the architecture and connectivity of the neurons can be specifically
designed to extract particular representation from a given input. A good example of this
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occurring in biology are the simple cells in the primary visual cortex, which are specialised
for extracting lines and edges from images.

Deep learning works by trial and error. If we imagine that we want to classify patients
who have died vs. those who survived, we need examples of both outcomes in the training
data. Before training, the AI will not know how to distinguish the patients. However,
each time the AI gets the classification wrong, the ‘weights’ between the artificial neurons
will be updated such that the network is less likely to return the same mistake again. To
do this we use an algorithm called backpropagation in conjunction with an optimisation
method such as gradient descent [99].

2.1 Fully-Connected Neural Networks

Neural networks are theoretically are capable of approximating any bounded continuous
differentiable function, given a sufficient number of labelled (input, output) variables [19].
Each neuron computes a weighted sum of its inputs from the previous layer, potentially
applying a nonlinear transformation such as logistic, tanh, or most commonly Rectified
Linear Unit (ReLU). At the most basic level, the operation of a single perceptron (artificial
neuron) can be written as:

y = σ

(
b+

n∑
i=1

wixi

)
(2.1)

where x ∈ Rn is the input vector, w ∈ Rn is a weight vector, b is a bias value, σ is a
non-linear activation function, and y is the output value. We can expand this to represent
a fully-connected neural network layer:

y = σ
(
Wx+ b

)
(2.2)

where W ∈ Rm×n is a weight matrix, b ∈ Rm is a bias vector, and y ∈ Rm is the output
vector. Neural networks that have one or more ‘hidden’ layers between the input and
output layers are referred to as ‘deep’. For example a two-layered perceptron (also shown
diagrammatically in Figure 2.2) can be written as:

y = σ2

(
W2σ1

(
W1x+ b1

)
+ b2

)
(2.3)

Networks with greater depth can execute more instructions in sequence [37], which can help
represent complexity. However, larger networks are generally more prone to over-fitting
during training. This can often be partially offset using regularisation techniques such as
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dropout1 [110] and batch normalisation2 [52].

Figure 2.2: A two-layered perceptron.

The layers depicted here are fully-connected, that is, every neuron in the preceding layer
is connected to every neuron in the subsequent one. Usually, we only use fully-connected
networks when we are dealing with unstructured data. This is because if something about
the structure, then it can be exploited for better performance. In the following sections, I
will present some of the ways in which we can specialise deep networks to process particular
inputs. Note that I implement and use every architecture mentioned in this section in this
dissertation, mostly as baselines to compare to my novel architectures.

2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are used for processing time series data. If we briefly
consider the structure of sequential data, usually the following are true:

• There are a fixed set of features for each time step, t.

• The length of the series can be arbitrary.

• The time step between each time point is regular and fixed.

• It some cases, the data that comes at timestep t can only be explained by the data
that comes before it in the sequence x1:t (note this is not true for speech).

Recurrent neural networks can summarise time series data into a vector of consistent
size (Figure 2.3). RNNs process the input one timestep at a time, meaning that the input

1Dropout is a regularisation strategy which effectively trains an ensemble of sub-networks by removing
non-output units randomly from the original network.

2Batch normalisation performs the normalisation for each training mini-batch, to accelerate training by
reducing internal covariate shift i.e. the change of parameters of previous layers will change each layer’s
input’s distribution.
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Figure 2.3: Unfolded RNN. The vector ht is computed iteratively across all timesteps. The
final hidden state hT can then be used as appropriate e.g. it can be fed into a fully-connected
network to get a final classification or prediction.

can be of any length, however it also means that they have a depth equal to the number
of steps in the time series. Each RNN cell shares the same weights, and these are updated
together using backpropagation through time (BPTT) [91].

A significant problem with the simple RNN is vanishing gradients – this means that
timesteps that occur early in the sequence are more likely to be ‘forgotten’ than recent
timesteps. This can be particularly true when the input is very long and the RNN is very
deep.

2.2.1 Long Short-Term Memory

Long Short-Term Memory networks (LSTMs) [50] are a specific type of RNN that attempts
to counter the vanishing gradient problem. The specific components of the LSTM are
found within the cells that process each timestep. A single LSTM cell is defined as follows:

it = σ(Wixt +Uiht−1 + bi) (2.4)

ft = σ(Wfxt +Ufht−1 + bf ) (2.5)

ot = σ(Woxt +Uoht−1 + bo) (2.6)

ct = ft � ct−1 + it � tanh (Wcxt +Ucht−1 + bc) (2.7)

ht = ot � tanh(ct) (2.8)

In these equations, xt is the input and ht is the output of the LSTM cell. W∗, U∗ and
b∗ correspond to learnable parameters, i, f , o and c refer to the input gate, forget gate,
output gate and new features respectively (see Figure 2.4), � corresponds to element-wise
multiplication, tanh is the hyperbolic tangent function and σ is the sigmoid (logistic)
function.

Figure 2.4 shows a diagram of the various gates and structure of an LSTM cell. The
input gate, Wi (Equation 2.4) decides which candidate values will be updated in the cell
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Figure 2.4: An LSTM cell. The forget gate appears first on the left, then the input gate is in
the middle, and the output gate is found on the right.

state. The forget gate, Wf (Equation 2.5) decides which values will be remembered from
the previous cell state. The matrix Wc (Equation 2.7) calculates a new set of candidate
values that could be added to the state. The output gate, Wo (Equation 2.6) decides
which components of the new cell state are allowed to exit the cell.

The power of the LSTM comes from its ability to learn what to remember and what
to forget. They have effectively surpassed the performance of simple RNNs [50].

Bi-directional LSTM When the causality assumption is not true of a particular input,
it can be useful to process the data in both the forward and backward directions [40]. The
final hidden states from each direction are typically concatenated to form the output.

Figure 2.5: A bidirectional LSTM (BiLSTM).
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2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are typically used for processing image data,
however they are not limited to this (for instance we use them for temporal data in this
dissertation). For image data, the following are usually true:

• The shape takes the form h× w × d, where h is the height, w is the width and d is
the depth, or number of channels. For example in RGB images, d will be 3.

• Each pixel has a fixed number of neighbours which represent fixed relative displace-
ments.

• Neighbouring pixels are much more likely to be related than pixels in different parts
of the image (local structure).

• Objects in the image may be of different sizes.

Grid-like structures are exploited by CNNs. In particular, the spatial structure in visual
data is taken into account by processing neighbouring pixels with kernels – miniature grids
which slide over the image but maintain the same set of parameters. The vast degree of
parameter sharing in CNNs makes them very parameter efficient and less likely to overfit.

A single convolutional operator for a 3D image tensor can be defined as follows3:

(I ∗K)ijk =
n∑
a=1

m∑
b=1

d∑
c=1

Ii+a,j+b,k+cKa,b,c (2.9)

where I ∈ Rh×w×d is the image tensor and K ∈ Rn×m×d is the kernel tensor. This is usually
more intuitive to understand in a diagram format (Figure 2.6). A single channel operator
(the case where d = 1) is shown for simplicity.

The kernel slides over all possible locations in the image, to record the sum of the
elementwise products. We can see that the convolutional operator exploits the fixed
structure between neighbouring pixels, as these are reliably placed within the kernel.

If the input data is images, it is usually necessary to downsample the data with pooling
layers. These summarise convolutional outputs into smaller representations, before the
next convolutional layer is applied. We will not discuss pooling layers in detail because we
do not use image data in this dissertation. However, the principle of summarising data
and subsequently stacking convolutional layers is relevant for our purposes. In particular
as we move deeper through a CNN, we obtain increasingly high-level representations of
the input and the receptive field size4 of the kernels becomes larger.

3Strictly speaking, the operator shown is cross-correlation, not convolution, but the difference is
unimportant; in cross-correlation, the kernel slides across the image without being flipped.

4By ‘receptive field’ we mean the area within the input image which can influence the output of a
kernel placed at a specific location.
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Figure 2.6: A convolution operator applied to a single channel image (d = 1), adapted with
permission from Veličković [122].

2.4 Graph Neural Networks

So far we have covered ways in which we can alter the connectivity of neural networks
to incorporate inductive biases about time series and grid-like data. Graph Neural
Networks (GNNs) are designed for graph structured data. Unlike grid-structured data,
the neighbourhood of nodes in a graph can have an irregular pattern. There are fewer
definitive things to say about graphs, however the following are usually true:

• There is a finite set of nodes with a set of edges between them.

• The edges can be undirected or directed.

• Each node may have a different number of neighbours.

• The edges may have values associated with them e.g. they may have a distance to
represent that the nodes are not equally spaced even if they are linked with an edge.

• The total number of nodes may be mutable in some scenarios.

Evidently, we need a fairly flexible architecture to exploit this data structure. The aim is to
distil the high-dimensional information about a node’s neighbourhood into a dense vector
embedding. These node embeddings can then be fed to downstream machine learning
systems and aid in tasks such as node classification, clustering, and link prediction. In
the following sections, I introduce four graph methodologies which I will go on to use in
Chapter 4.

2.4.1 Graph Convolutional Networks

The Graph Convolutional Network (GCN) [58] was one of the early GNNs to generalise
ideas from CNNs to the graph domain. If we assume a graph G = (V , E) contains a set of
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N nodes vi ∈ V with edges (vi,vj) ∈ E . From this we can obtain the adjacency matrix
A ∈ RN×N and degree matrix Dii =

∑N
j Aij.

The l-th GCN layer follows the propagation rule:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2HlWl

)
(2.10)

where Ã = A+ IN is the adjacency matrix with self loops inserted, D̃ is the degree matrix
of Ã, Hl ∈ RN×dl are intermediate node features from layer l, where dl is the number
of features, and Wl ∈ Rdl×d(l+1) is a shared set of learnable parameters that are applied
node-wise to obtain d(l+1) higher level features.

hli

hla

hlc

hld
hle

h
(l+1)
i

Figure 2.7: A GCN layer.

A graph convolutional layer generates a higher-level representation of a node i by
leveraging the data from its neighbourhood, Ni (Figure 2.7). When written node-wise,
the rule follows:

h
(l+1)
i = σ

(∑
j∈Ni

1√
|Ni||Nj|

Wlhlj

)
(2.11)

where Ni includes the i-th node, and hlj ∈ Rdl represents the node features in layer l.
Analysing this rule, we can see that the node is updated based on its current features

and the features of its neighbours. The self-loops allow the node’s own features to be
preserved across layers. Crudely, the GCN can be compared to averaging within the
neighbourhood in each layer. This means that it works best when the edges represent a
uniform degree of similarity between nodes.

2.4.2 Graph Attention Networks

The Graph Attention Network (GAT) [123] is broadly similar to the GCN except that it
uses self-attention (Section 2.5) to determine how much each node should be weighted
when recombining the features within the neighbourhood. A GAT layer with a single
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attentional head can be written as follows:

h
(l+1)
i = σ

(∑
j∈Ni

αijW
lhlj

)
(2.12)

where:
αij = softmaxj

(
σ′
(
a>[Wlhli ‖Wlhlj]

))
(2.13)

where a> is a transposed vector of attentional weights a ∈ R2dl , ‖ represents the con-
catenation operation, and σ′ is a LeakyReLU [66]. Again the neighbourhood Ni includes
the self node. When multiple attentional heads are used, the output from each head is
concatenated. This is shown diagrammatically in Figure 2.8.

hli

hla

hlb

hlc

hld

hle

α
ie

αii

α
ia

αib

α i
c

h
(l+1)
i

concat/avg

Figure 2.8: A GAT layer with three attentional heads (represented with blue, purple, green),
modified from the original work with permission [123].

The GAT can model more complex relationships within neighbourhoods than the GCN,
because the attentional weights can draw the focus onto particular nodes, and even apply
negative weightings to certain nodes. Effectively the GAT has the power to apply different
importances to nodes in the same neighbourhood.

2.4.3 GraphSAGE

The sampling method from GraphSAGE (SAmple and aggreGatE) [45] is a method for
computing node representations in an inductive manner. It operates by sampling a fixed-
size neighbourhood (uniform with replacement) of each node and aggregating e.g. by taking
the mean, the element-wise minimum/maximum of the feature vectors, or feeding them
through a neural network such as LSTM. We show GraphSAGE-mean as an example:

h
(l+1)
i = σ

( ∑
j∈N ∗i

1

|N ∗i |
Wlhlj

)
(2.14)
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where N ∗i is a sampled neighbourhood of fixed size, including the self node.

2.4.4 Message Passing Neural Networks

Message Passing Neural Networks (MPNNs) [33] refer to a generic set of GNNs which may
allow for the passing of ‘edge feature’ information as well as node features. We can define
an example as the following:

h
(l+1)
i = σ

(
γl
(
hli,m

(l+1)
i

))
(2.15)

where:

m
(l+1)
i = σ

(∑
j∈Ni

φl
(
hli,h

l
j, eij

))
(2.16)

where {eij ∈ Rk|Aij = 1} is a collection of k-dimensional edge features, φl is the message
encoder network and γl performs the node updates. Note that I have shown the sum
aggregator in Equation 2.16, but this could any could be any permutation-invariant
aggregator function. MPNNs are an incredibly flexible formulation for GNNs – in fact,
both GCN and GAT can be reformulated as particular instances of MPNNs. In theory,
they can have greater modelling capacity than the other GNN formulations mentioned
here.

2.5 Self-Attention

The use of self-attention is not limited to a particular data type, and it will appear in
different contexts in this dissertation. For example it has already appeared in Section 2.4.2
(Equation 2.13) when describing the GAT model. In simple terms, it describes a method
whereby the inputs (‘self’) are allowed to interact with one another, to discover which are
the important parts of the input (‘attention’).

Figure 2.9 shows a diagram of self-attention. The inputs are considered to be an
unordered set E = {el1, el2 . . . , eln}. Self-attention will return a set of corresponding outputs
whereby each output step can consider all input steps:

e
(l+1)
i =

N∑
j

αijf(e
l
j) (2.17)

where f is a single layer neural network and αij is the attentional coefficient.
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Figure 2.9: A self-attentional layer, where a represents the attention function, and f is a simple
neural network.

2.5.1 Transformer

The Transformer [121] is an encoder-decoder model originally intended for Natural Lan-
guage Processing (NLP), although now it has many other uses. It relies solely on the
use of self-attention, where the representation of a sequence (or sentence) is computed
by relating different words in the same sequence. Its sole reliance on attention addresses
many of the pitfalls of RNN-based models for time series – most importantly that they
cannot be parallelised due to their sequential inputs. This suddenly made it possible to
train huge models on equally enormous language data sets.

The self-attention components of the Transformer (Figure 2.10) take their input as
three separate tensors - queries Q, keys K and values V. The concept is analogous to
retrieval systems in computing. For example, when you search for results on google, the
search engine will map the query (text in the search bar) to a set of keys (title, keywords
etc.) associated with candidate web pages in their data set (values). They will then
present the best matched web pages. In the original Transformer, a ‘multi-head attention’
block (Figure 2.10) performs the following operations:

ψ(Q,V,K) =

(
hn

i=1

ai

)
WO (2.18)

where ψ represents the multi-head attention function,
f
denotes concatenation i.e.

fA
i=1 ai =

37



a1 ‖ . . . ‖ aA, Q ∈ Rm×dmodel represents the queries, K ∈ Rn×dmodel is the keys, V ∈
Rn×dmodel is the values, and WO ∈ Rhdv×dmodel is the output transformation, h (the number
of attention heads), dv, dk and dmodel are all hyperparameters, and ai is the output of a
single attention head, defined as:

ai = a
(
QWQ

i ,KWK
i ,VWV

i

)
(2.19)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , and WV
i ∈ Rdmodel×dv are transformations to

the queries, keys and values respectively, and a is the attention function, defined as:

a(Q′,V′,K′) = softmax

(
Q′K′>√

dk

)
V′ (2.20)

where Q′ = QWQ
i ∈ Rm×dk , K′ = KWK

i ∈ Rn×dk and V′ = VWV
i ∈ Rn×dk .
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Figure 2.10: The Transformer architecture, taken from the original paper ‘Attention is all you
need’ [121]. The ‘Multi-Head Attention’ blocks are defined in Equation 2.18. ‘Norm’ refers to
Layer Normalisation [3].
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CHAPTER 3

Temporal Pointwise Convolution

This chapter presents my work on a new deep learning model for time series representation
learning based on the combination of temporal convolution and pointwise (1x1) convolution.
I designed this to solve the problem of length of stay prediction on the eICU and MIMIC-IV
critical care data sets. The model – which I refer to as Temporal Pointwise Convolution
(TPC) – is specifically designed to mitigate common challenges with Electronic Health
Records, such as skewness, irregular sampling and missing data.

I started this work following a research internship at Microsoft Research Cambridge in
2019, where I was supervised by Stephanie Hyland. During the internship, we had been
experimenting with ways to improve the performance of length of stay prediction models.
The work was still in its early stages by the end of the summer, so we agreed to continue
collaborating after the internship was over. After my return to the Computer Lab, I was
talking to Alex Campbell, a fellow PhD student who was working on convolutional neural
networks for functional MRI data, when I had a seed of an idea which evolved into the
TPC model presented in this chapter. All aspects of this work are my own, and I had
bi-weekly supervision from Stephanie Hyland during this time. My work was published as
a conference paper at ACM Conference on Health, Inference, and Learning (CHIL) 2021,
under the title “Temporal Pointwise Convolutional Networks for Length of Stay Prediction
in the Intensive Care Unit” [95]. A shorter, 4-page extended abstract was accepted as a
spotlight talk at the Machine Learning for Health (ML4H) Workshop at NeurIPS 2020,
and at the Healthcare Systems, Population Health, and the Role of Health-Tech (HSYS)
Workshop at ICML 2020 [94].

3.1 Length of Stay Prediction

In-patient length of stay (LoS) explains approximately 85-90% of inter-patient variation
in hospital costs in the United States [88]. Extended length of stay is associated with
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increased risk of contracting hospital acquired infections [48] and mortality [60]. Hospital
bed planning can help to mitigate these risks and improve patient experiences [8]. This is
particularly important in the intensive care unit (ICU), which has the highest operational
costs in the hospital [20] and a limited supply of specialist staff and resources. Such
a system would rely on data from the Electronic Health Record (EHR) system, which
contains patient data such as medical histories, diagnoses, medications, medical imaging,
laboratory tests and clinical notes.

At present, discharge date estimates are done manually by clinicians, but these rapidly
become out-of-date and can be unreliable (for example Mak et al. [67] found that the
average error made by clinicians was 3.82 days). Automated systems drawing on the
electronic health record (EHR) have the potential to improve forecasting accuracy using
state-of-the-art models that can be updated in light of new data. This has efficiency benefits
in reducing the administrative burden on clinicians, and the improved accuracy may enable
more sophisticated planning strategies e.g. scheduling high-risk elective surgeries on days
with more availability [32].

3.2 Key Contributions

In this work, I simulated real-time predictions in retrospective data by updating the
patients’ remaining ICU length of stay prediction at hourly intervals during their stay
using the preceding data from the EHR (similar to Harutyunyan et al. [46]). When
designing both the architecture and pre-processing, I focused on mitigating the effects
of non-random missingness due to irregular sampling, sparsity, outliers, skew, and other
common biases in EHR data. My key contributions are:

1. A new model – Temporal Pointwise Convolution (TPC) – which combines:

• Temporal convolutional layers [55, 120], which capture causal dependencies
across the time domain.

• Pointwise convolutional layers [64], which compute higher level features from
interactions in the feature domain.

My model significantly outperformed the commonly used Long-Short Term Memory
(LSTM) network [50] and the Transformer [121] by margins of 18-68%.

2. I make a case for using the mean-squared logarithmic error (MSLE) loss function
to train LoS models. The raw labels have a significant positive skew, whereas the
log(LoS) approximates to a Gaussian distribution (Figure 3.1). Using MSLE rather
than mean-squared error (MSE), penalises proportional rather than absolute errors
and stabilises training.
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Figure 3.1: Total LoS, remaining LoS, and log(remaining LoS) distributions in the eICU data
set. The remaining LoS has a significant positive skew, with mean and median values of 3.47
and 1.67 days respectively. Note that the log(remaining LoS) has a distribution much closer to
that of a Gaussian. The spike at -3.87 log(days) is an artefact of the data pre-processing (the
patient will never appear to have less than 30 minutes remaining in their stay). The skew in the
remaining LoS in MIMIC-IV (not shown) is even more pronounced (5.70 and 2.70 days).

3. By adding in-hospital mortality as a side-task, I demonstrated further performance
gains in the multitask setting.

4. I performed several investigations to improve my understanding of the model, in-
cluding: an extensive ablation study of the model architecture, a post-hoc analysis
of feature importances with integrated gradients [112], and a visualisation to show
the model reliability as a function of the time since admission and the predicted
remaining LoS.

Additionally, I developed a data processing pipeline for the eICU [83] and MIMIC-IV
[53] databases that is designed to i) mitigate some of the impact of sparsity (for the
diagnoses) and missing data (for time series) in the EHR and ii) extract a wide variety of
features semi-automatically such that the approach is generalisable to other EHR databases.
My code is available at: https://github.com/EmmaRocheteau/TPC-LoS-prediction.

3.3 Related Work

Despite its importance, LoS prediction has received less attention than mortality prediction.
This could be due to its difficulty; LoS depends heavily on operational factors and there is
considerable positive skew in its distribution (see Figure 3.1). While it has been addressed
as a regression problem (optimised using the mean-squared error (MSE) [86, 106]), it
is often simplified into binary classification (short vs. long stay) [36, 75, 87], or as a
multi-class task [46]. This simplification limits its usefulness as you can only plan over a
pre-set timescale, so I choose to focus on the more challenging regression variant.

Traditional machine learning techniques have not performed as well as deep learning
on LoS prediction because they often require assumptions about the data, such as linearity,
normality, or stationarity which do not hold true [12, 46, 86, 87]. Medical time series data
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is high-dimensional and non-linear, making it difficult for traditional machine learning
methods to capture the complex temporal patterns in the data.

Owing to the centrality of time series in the EHR, the most popular deep learning model
for LoS prediction has been the LSTM [46, 87, 106]. This reflects the prominence of LSTMs
in other clinical prediction tasks such as predicting in-hospital adverse events including
cardiac arrest [118] and acute kidney injury [117], forecasting diagnoses, medications
and interventions [13, 65, 113], missing-data imputation [10], and mortality prediction
[12, 46, 107]. More recently, the Transformer model [121] been shown to marginally
outperform the LSTM on LoS [109] (and it continues to dominate in many other domains
[73]). Therefore, the LSTM and the Transformer were chosen as key baselines.

Temporal convolution models have previously been applied to the task of early disease
detection using longitudinal lab tests [77, 89, 90], yielding similar results to the LSTM. I
highlight two main differences in my work: I introduced a set of pointwise convolutions
in parallel, and the temporal convolution filters do not share their parameters between
features, allowing the model to optimise processing in spite of heterogeneity in the temporal
characteristics. I demonstrated via ablation studies how these design choices contribute
substantial improvements to the patient state representation, yielding state-of-the-art
results on LoS prediction.

3.4 Methods

3.4.1 Model Overview

I designed my model to extract both temporal trends and inter-feature relationships in
order to capture the patient’s clinical state. To explain the reasoning, let us consider
a patient who is experiencing slowly worsening respiratory symptoms but is otherwise
stable. As this patient is unlikely to be weaned from their ventilator in the near future, a
clinician might anticipate a long remaining LoS, but how do they come to this conclusion?
Intuitively, one of the factors they are evaluating is the trajectory of the patient e.g. they
may ask themselves “Is the respiratory rate getting better or deteriorating?”. However,
they can obtain a better indication of lung function by combining certain features e.g.
the PaO2/FiO2 ratio, and then looking at how these vary over time. A model should
therefore be adept at extracting and combining both intra-feature temporal statistics and
inter-feature relationships.

Formally, my task was to predict the remaining LoS at regular time points y1, . . . , yT ∈
R>0 in the patient’s ICU stay, up to the discharge time T , using D diagnoses (d ∈ RD×1),
S static features (s ∈ RS×1), and time series (x1, . . . ,xT ∈ RF×2). In the time series,
there are two ‘channels’ per time series feature for every time point t: F feature values
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(x′t ∈ RF×1), and F corresponding decay indicators (x′′t ∈ RF×1). The decay indicators
tell the model how recently the observation x′t was recorded. They are described in detail
in Section 3.5.3.3. As we pass through the layers of my model, I repeatedly extract trends
and inter-feature relationships using a novel combination of techniques.

3.4.2 Temporal Convolution

Temporal Convolution Networks (TCNs) [55, 120] are a subclass of convolutional neural
networks [31] that convolve over the time dimension. They operate on two key principles:
the output is the same length as the input, and there can be no leakage of data from
the future. I used stacked TCNs to extract temporal trends in my data. Unlike most
implementations including [90], I did not share weights across features i.e. weight sharing
is only across time (like in Xception [15]). This is because the features differ sufficiently in
their temporal characteristics to warrant specialised processing.

I defined the temporal convolution operation for the ith feature in the nth layer as

(fn,i ∗ hn,i)(t) =
k∑
j=1

fn,i[j] hn,it−d(j−1) (3.1)

where hn,i1:t ∈ RCn×t represents the temporal input to layer n until time point t, which
contains Cn channels per feature1. The convolutional filter fn,i : {1, . . . , k} → RY×Cn is a
tensor of Y × Cn × k parameters per feature. It maps Cn input channels into Y output
channels while examining k timesteps. The output is therefore (fn,i ∗ hn,i)(t)> ∈ R1×Y .
The dilation factor, d, and kernel size, k, together determine the temporal receptive field
or ‘timespan’ of the filter: d(k − 1) + 1 hours for a single layer. To ensure that the output
is always length T , I added left-sided padding of size d(k − 1) before every temporal
convolution (not shown in Equation 3.1). The t− d(j − 1) term ensures that I only look
backwards in time. The receptive field can be increased by stacking multiple TCNs (as in
Wavenet [120] and ByteNet [55]). I increased the dilation by 1 with each layer i.e. d = n.

I concatenated the temporal convolution outputs for each feature, i as follows

(fn ∗
Temp. In.(1)︷︸︸︷

hn )︸ ︷︷ ︸
Temp. Out.(2)

(t) =
Rnn

i=1

(fn,i ∗ hn,i)(t)> (3.2)

I used
f
to denote concatenation i.e.

fA
i=1 a

i = a1 ‖ . . . ‖ aA. In my case, the output
dimensions are Rn × Y , where Rn is the number of temporal input features. Throughout
this section I label terms with numbers (1), (2) etc. corresponding to objects in Figure 3.4.
I recommend following this alongside the equations.

1In the first layer, the input hn,i
1:t is the original data xn,i

1:t ∈ R2×t, so C1 = 2.
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Figure 3.2: Temporal convolution with skip connections (green lines). Each time series, i (blue
dots) and their decay indicators (orange dots) are processed with independent parameters.

3.4.3 Pointwise Convolution

Pointwise convolution [64], also referred to as 1 × 1 convolution, is typically used to
reduce the channel dimension when processing images [114]. It can be conceptualised as
a fully connected layer, applied separately to each time point (shown diagrammatically
in Figure 3.3). As in temporal convolution, the weights are shared across all time points;
however, there is no information transfer across time. Instead, information is shared across
the features to obtain Z interaction features2, pnt = ([(hnt ) ‖ s ‖ x′′t) ∈ RPn×1, where
P n = (Rn × Cn) + F + S, and [ : Ad1×d2...×dn → A(d1·d2...·dn)×1 is the flatten operation. I
defined the pointwise convolution operation in the nth layer as

(gn ∗
Point. In.(4)︷︸︸︷

pn )︸ ︷︷ ︸
Point. Out.(5)

(t) =
Pn∑
i=1

gn[i]pn,it (3.3)

where gn : {1, . . . , P n} → RZ×1 is the pointwise filter, and the resulting convolution
produces Z output channels, so (gn ∗ pn)(t) ∈ RZ×1.

3.4.4 Skip Connections

I propagated skip connections [49] to allow each layer to see the original data and the
pointwise outputs from previous layers. This helps the network to cope with sparsely
sampled data. For example, suppose a particular blood test is taken once per day.
In order not to lose temporal resolution, I forward-filled these data (Section 3.5) and
convolved with increasingly dilated temporal filters until I found the appropriate width

2I used a wider set of features for pointwise convolution, including static features s and decay indicators
x′′ i.e. pn

t = ([(hn
t ) ‖ s ‖ x′′t) ∈ RPn×1.
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Figure 3.3: Pointwise convolution. There is no information sharing across time, only across
features (blue, green, yellow dots).

to capture a useful trend. However, if the smaller filters in previous layers (which did
not see any useful trend) have polluted the original data by re-weighting, learning will
be harder. Therefore, skip connections provide a consistent anchor to the input. They
are concatenated (like in DenseNet [51], and are arranged in the shared-source connection
formation [128]) as illustrated in Figure 3.2. The skip connections expand the feature
dimension, Rn = F + Z(n − 1), to accommodate the pointwise outputs, and also the
channel dimension to fit the original data, Cn = Y +1. This is best visualised in Figure 3.4.

3.4.5 Temporal Pointwise Convolution

My model – which I refer to as Temporal Pointwise Convolution (TPC) – combines
temporal and pointwise convolution in parallel. Firstly, the temporal output is combined
with the skip connections to form rnt (Step 3 in Figure 3.4).

rnt︸︷︷︸
(3)

= (fn ∗ hnt )︸ ︷︷ ︸
Temp. Out.(2)

‖ x′t ‖
[ n−1n

n′=1

(gn
′ ∗ pn′t )︸ ︷︷ ︸

Skip Connections

]
(3.4)

rnt is then concatenated with the pointwise output after it has been broadcast Y + 1 times.
I can therefore define the nth TPC layer as

h
(n+1)
t︸ ︷︷ ︸

TPC Out.(6)

= σ

(
rnt︸︷︷︸
(3)

‖
[ Y+1n

i=1

(gn ∗ pnt )︸ ︷︷ ︸
Point. Out.(5)

])
(3.5)

where σ represents the ReLU activation function. The full model has N TPC layers
stacked sequentially. After N layers, the output hNt is combined with S static features
s ∈ RS×1, and a diagnosis embedding d∗ ∈ RD∗×1 (the output of a diagnosis encoder which
takes in D raw diagnoses). Then, two further pointwise convolutions are applied to obtain
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Figure 3.4: The nth TPC layer. F is the number of time series features. T is the length of
the time series. Cn is the number of temporal convolutional channels per feature in the previous
TPC layer (in the first layer Cn is 1). Zn−1 is the cumulative number of pointwise outputs from
all previous TPC layers (in the first layer Zn−1 is 0). Y and Z are the number of temporal
channels per feature and pointwise outputs respectively in the current TPC layer. Left-sided
padding (off-white) is added to the temporal side before each feature is processed independently
(indicated by the differently coloured filters). d is the temporal dilation, k is the kernel size. On
the pointwise side, S static features (yellow) and F decay indicators (orange) (see Section 3.5.3.3)
are added before each convolution. Skip connections containing F original features (grey) plus
Zn−1 pointwise outputs (light blue) are added. I have ignored the batch dimension for clarity.
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TPC model).

47



the final predictions. Formally, these final steps (shown in Figure 3.5) can be written as

ŷt︸︷︷︸
(9)

= HardTanh
(
exp
(
g′′ ∗ σ

(
g′ ∗

Final Combined In.(7)︷ ︸︸ ︷[
[(hNt ) ‖ s ‖ d∗

]
︸ ︷︷ ︸

Penultimate Point. Out.(8)

)))
(3.6)

where B = RN × (Y + 1) + S +D∗ and the final pointwise filters are g′ : {1, . . . , B} →
RX×1 and g′′ : {1, . . . , X} → R1×1. Note that if a baseline model were to be used instead
of TPC, the output dimensions would be H x 1 instead of B x 1, where H is the LSTM
hidden size or dmodel in the Transformer. I apply an exponential function to allow the
upstream model to predict log(LoS) instead of LoS. I hypothesised that this could help to
circumvent a common issue seen in previous models (e.g. Harutyunyan et al. [46], as they
struggle to produce predictions over the full dynamic range of length of stays). Finally, I
apply a HardTanh function [43] to clip any predictions that are smaller than 30 minutes
or larger than 100 days, which protects against inflated MSLE loss values.

HardTanh(x) =


100, if x > 100,

1
48
, if x < 1

48
,

x, otherwise.

(3.7)

I used batch normalisation [52] and dropout [110] throughout to regularise the model.

3.4.6 Loss Function

The remaining LoS has a positive skew (shown in Figure 3.1) which makes the prediction
task more challenging. I addressed this by replacing the commonly-used mean squared
error (MSE) loss with mean squared log error (MSLE).

L =
1

T

T∑
t=1

(log(ŷt)− log(yt))
2 (3.8)

MSLE penalises proportional errors, which is more reasonable when considering an error
of e.g. 5 days in the context of a 2-day stay vs. a 30-day stay. The difference can be
seen in Figure 3.6. For bed management purposes it is particularly important not to
harshly penalise over-predictions – the model will become overly cautious and regress its
predictions towards the mean. This is counter-productive because long stay patients have
a disproportionate effect on bed occupancy.
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Figure 3.6: The behaviour of squared logarithmic error (blue) and squared error (red) functions
when the true LoS is 1 day.

3.5 Data

3.5.1 eICU Database

I used the eICU Collaborative Research Database [83], a multi-centre data set collated
from 208 care centres in the United States, available through PhysioNet [35]. It comprises
200,859 patient unit encounters for 139,367 unique patients admitted to ICUs between
2014 and 2015.

I selected all adult patients (>18 years) with an ICU LoS of at least 5 hours and at
least one recorded observation, resulting in 118,535 unique patients and 146,671 ICU stays.
I selected 87 time series from the following tables: lab, nursecharting, respiratorycharting,
vitalperiodic and vitalaperiodic. To be included, variables had to be present in at least
12.5% of patient stays, or 25% for lab variables. The increased cut off for lab variables
was due to rarely ordered tests also having fewer time points per patient. Including more
variables than needed – especially if they have no trend information – makes the models
computationally inefficient as they have to scale to the size of the input.

I extracted diagnoses from the pasthistory, admissiondx and diagnoses tables, and the
full set of 17 static features from the patient, apachepatientresult and hospital tables (see
Tables 3.2 and A.9 for the full list of features). All pre-processing decisions were made
with input from two ICU physicians.

3.5.2 MIMIC-IV Database

I verified my results on a second data set, the Medical Information Mart for Intensive
Care (MIMIC-IV v0.4) database [53], a de-identified and publicly available EHR data set
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from the Beth Israel Deaconess Medical Center containing 69,619 ICU stays from 50,048
patients admitted between 2008 and 2019.

I used the same cohort selection criteria as in eICU to select 69,609 ICU stays from
50,042 patients. I followed the same feature selection process to obtain a short list of
172 time series from the chartevents and labevents. I manually removed 71 of these from
chartevents as per expert advice because the variable did not vary over time, or because
the distribution was not found to provide useful discrimination between patients (see
Table A.10 for the final list of features).

I extracted 12 static features from the icustays, admissions, patients and chartevents
tables (Table 3.3). I did not extract diagnoses from MIMIC-IV because they are not
associated with reliable timestamps.

Table 3.1: Cohort summaries.

eICU MIMIC-IV

Number of patients 118,535 50,042
Train 82,973 35,028
Validation 17,781 7,507
Test 17,781 7,507

Number of stays 146,671 69,609
Train 102,749 48,848
Validation 22,033 10,497
Test 21,889 10,264

Gender (% male) 54.1% 55.8%
Age in years (mean) 63.1 64.7
LoS in days (mean) 3.01 3.98
LoS in days (median) 1.82 2.06
Remaining LoS (mean) 3.47 5.70
Remaining LoS (median) 1.67 2.70
In-hospital mortality 9.25% 11.4%

Number of input features 104 113
Time series 87 101
Static 17 12

3.5.3 Feature Pre-Processing

3.5.3.1 Static Features

I selected 17 static features from eICU (Table 3.2) and 12 from MIMIC-IV (Table 3.3).
Discrete and continuous variables were scaled to the interval [-1, 1], using the 5th and 95th
percentiles as the boundaries, and absolute cut offs were placed at [-4, 4]. This was to
protect against large or erroneous inputs, while avoiding assumptions about the variable
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distributions. Binary variables were coded as 1 and 0. Categorical variables were converted
to one-hot encodings.

Table 3.2: eICU static features. Age >89, Null Height and Null Weight were added as indicator
variables to indicate when the age was more than 89 but has been capped, and when the height
or weight were missing and have been imputed with the mean value.

Feature Type Source Table

Gender Binary patient
Age Discrete patient
Hour of Admission Discrete patient
Height Continuous patient
Weight Continuous patient
Ethnicity Categorical patient
Unit Type Categorical patient
Unit Admit Source Categorical patient
Unit Visit Number Categorical patient
Unit Stay Type Categorical patient
Num Beds Category Categorical hospital
Region Categorical hospital
Teaching Status Binary hospital
Physician Speciality Categorical apachepatientresult
Age >89 Binary
Null Height Binary
Null Weight Binary

3.5.3.2 Diagnoses

Here I only describe pre-processing for eICU since MIMIC-IV did not contain coded
diagnoses with appropriate timestamps.

Like many EHRs, diagnosis coding in eICU is hierarchical. At the lowest level they can
be quite specific e.g. “neurologic | disorders of vasculature | stroke | hemorrhagic stroke
| subarachnoid hemorrhage | with vasospasm”. To maintain the hierarchical structure
within a flat vector, I assigned separate features to each hierarchical level and use binary
encoding. This produces a vector of size 4,436 with an average sparsity of 99.5% (only
0.5% of the data is positive). I applied a 1% prevalence cut-off on all these features to
reduce the size of the vector to 293 and the average sparsity to 93.3%. If a disease does
not make the cut-off for inclusion, it is still included via any parent classes that do make
the cut-off (in the above example I recorded everything up to ‘hemorrhagic stroke’). I only
included diagnoses that were recorded before the 5th hour in the ICU, to avoid leakage
from the future.

Many diagnostic and interventional coding systems are hierarchical in nature e.g.
International Classification of Diseases (ICD) [129], Clinical Classifications Software
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Table 3.3: MIMIC-IV static features. Age was calculated from the ‘intime’ field in the icustays
table and ‘anchor year’ in the patients table.

Feature Type Source Table

Gender Binary patients
Ethnicity Categorical admissions
Admission Location Categorical admissions
Insurance Type Categorical admissions
First Careunit Categorical icustays
Hour of Admission Discrete icustays
Admission Height Continuous chartevents
Admission Weight Continuous chartevents
Eyes Discrete chartevents
Motor Discrete chartevents
Verbal Discrete chartevents
Age Discrete

(CCS) [27], SNOMED CT [22], and Office of Population Censuses and Surveys (OPCS)
Classification of Interventions and Procedures [76], so this technique is generalisable to
other coding systems present in EHRs.

3.5.3.3 Time Series

For each admission, I extracted 87 time-varying features from eICU (Table A.9) and 101
from MIMIC-IV (Table A.10) for each hour of the ICU visit, and up to 24 hours before
the ICU visit. The variables were processed in the same manner as the static features. In
general, the lab variables tend to be sparsely and irregularly sampled (this can be seen
in Figure 3.7). To help the model cope with this missing data, I re-sampled according
to one-hour intervals and forward-filled the data over the gaps. Note that this is more
realistic than interpolation as the clinician would only have the most recent value. After
forward-filling was complete, any data recorded before the ICU admission was removed.

Decay Indicators With the forward-filling method alone, the model would not know
whether a particular data point was a true observation or whether the data had been
imputed. This is important because the sampling itself may be informative, for example a
deteriorating patient may have more frequent investigations. To mitigate for this, I added
‘decay indicators’ to specify where the data had been imputed, and if it had, how long it
had been since the measurement was taken. The decay was calculated as 0.75j, where j
is the time since the last recording. This is similar in spirit to the masking used by Che
et al. [12].
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Figure 3.7: Example data from a patient in eICU (after pre-processing). The colour scale
indicates the value of the feature, and the narrow bars show the corresponding decay indicators.
Blood glucose, potassium and lymphocytes are from the lab table and are sparsely sampled.
Non-invasive blood pressure is manually recorded by the nurse every 2 hours, while respiratory
rate and heart rate are vital signs that are automatically logged.

3.6 Experiments

In this section, I describe the prediction tasks, baseline models and evaluation metrics. As
in Harutyunyan et al. [46] the training and test data was fixed upfront – the patients were
divided such that 70% were used for training, 15% for validation, and 15% for testing.

3.6.1 Prediction Tasks

3.6.1.1 Remaining Length of Stay

I assigned a remaining LoS target to each hour of the stay, beginning at 5 hours and
ending when the patient dies or is discharged. I trained the models to make a prediction
every hour of the stay. I only included the first 14 days of any patient’s stay to protect
against very long batches which would slow down training. This cut-off applies to <5% of
patient stays, but it does not affect their maximum remaining LoS values.

3.6.1.2 In-Hospital Mortality

I also tested the performance of the models on mortality prediction. Unlike LoS, these
labels remain static throughout the patient stay. I used the same training procedure
as the LoS task i.e. one prediction each hour. However, to reflect the approach taken
by Purushothama et al. [86] and Harutyunyan et al. [46], I only report the mortality
performance once per patient (at 24 hours into the stay). This means that the cohort
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represented in the mortality metrics in Table 3.7 is smaller (16,239 of 21,889 test stays in
eICU and 8,320 of 10,264 test stays in MIMIC-IV).

3.6.1.3 Multitask

Previous work has found merit in a multitask approach to patient outcome prediction
[46, 106]. I investigated whether I would see a similar benefit in the TPC model. When
combining the LoS and mortality losses, I applied a relative weighting to the mortality loss
– dictated by a parameter α (which was treated as a hyperparameter). Further information
on the hyperparameter search and implementation details is in Appendix A.1.

3.6.2 Baselines

I included the following baselines in my experiments:

‘Mean’ and ‘Median’ models (LoS only) These always predict 3.47 and 1.67 days
respectively for eICU and 5.70 and 2.70 days for MIMIC-IV (these correspond to the mean
and median of the training data). This is to benchmark the level of performance which
is achievable ‘for free’ just by predicting in a reasonable range, and to provide points of
reference when setting performance expectations for each data set.

APACHE-IV values (eICU only) These are generated by a risk assessment scoring
model which is evaluated only once per patient at 24 hours [136]. Therefore it cannot be
compared directly, but I include it only as a point of reference for a widely used clinical
model. APACHE-IV is only present in the eICU data set.

Standard LSTM My standard LSTM is similar to Harutyunyan et al. [46].

Channel-wise LSTM (CW LSTM) Again similar to Harutyunyan et al. [46], this
consists of a set of independent LSTMs that process each feature separately before
concatenation (note the similarity with the independent temporal convolutions in the TPC
model).

Transformer This model takes advantage of multi-head self-attention. Like the TPC
model, it is not constrained to progress one timestep at a time; however, unlike TPC, it is
not able to scale its receptive fields or process features independently.
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3.6.3 Evaluation Metrics

3.6.3.1 Length of Stay

I reported on 6 LoS metrics: mean absolute deviation (MAD), mean absolute percentage
error (MAPE), mean squared error (MSE), mean squared log error (MSLE), coefficient of
determination (R2) and Cohen Kappa Score [16].

I modified the MAPE metric slightly so that very small true LoS values do not produce
unbounded MAPE values. I placed a 4 hour lower bound on the divisor i.e.

Absolute Percentage Error =

∣∣∣∣∣ ytrue − ypredmax (ytrue,
4
24
)

∣∣∣∣∣ ∗ 100
The 4 hour bound produces a compromise between approximating the true metric (the
alteration only applies to the cases where ytrue < 4 hours), whilst protecting against wildly
magnified errors that would ultimately make the MAPE metric meaningless.

Note that the MAD and MAPE metrics are improved by centering predictions on the
median. Whereas MSE and R2 are bettered by centering predictions around the mean
and hence are more affected by the skew. MSLE is arguably the best metric for this task
as it is robust to skew and takes all the data into account, indeed, it is the loss function
in most experiments, but is less readily-interpretable than some of the other measures.
Cohen’s linear weighted Kappa Score [16] is intended for ordered classification tasks rather
than regression, but it can effectively mitigate for skew if the bins are chosen well. It has
previously provided useful insights in Harutyunyan et al. [46], so I use the same LoS bins:
0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-14, and 14+ days. As a classification measure, it will
treat everything falling within the same classification bin as equal, so it is fundamentally
a coarser measure than the other metrics.

To illustrate the importance of using multiple metrics, consider that the ‘Mean’ and
‘Median’ models are in some sense equally poor – neither has learned anything meaningful
for our purposes. Nevertheless, the median model is able to better exploit the MAD,
MAPE and MSLE metrics, and the mean model fares better with MSE, but the Kappa
score betrays them both. A good LoS model will perform well across all of the metrics.

3.6.3.2 In-Hospital Mortality

In the mortality and multitask experiments I reported the Area Under the Receiver
Operating Characteristic curve (AUROC) and the Area Under the Precision Recall Curve
(AUPRC).
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Table 3.4: Performance of the TPC model compared to baseline models. The loss function in
all experiments is MSLE. For the first four metrics, lower is better. The error margins are 95%
confidence intervals (CIs) calculated over 10 runs. These are not present for the mean, median
and APACHE-IV models because they are deterministic. The best results are highlighted in
blue. If the result is statistically significant on a t-test then it is indicated with stars (*p<0.05,
**p<0.001). MAD: mean absolute deviation; MAPE: mean absolute percentage error; MSE: mean
squared error; MSLE: mean squared logarithmic error; R2: coefficient of determination, Kappa:
Cohen Kappa Score [16]. †Note that the APACHE-IV results (only present in the eICU data set)
cannot be compared directly to the other models (explained in Section 3.6.2).

Data Model MAD MAPE MSE MSLE R2 Kappa

eICU

Mean 3.21 395.7 29.5 2.87 0.00 0.00
Median 2.76 184.4 32.6 2.15 -0.11 0.00
APACHE-IV† 2.54 182.1 16.6† 1.10 -0.01 0.20
LSTM 2.39±0.00 118.2±1.1 26.9±0.1 1.47±0.01 0.09±0.00 0.28±0.00
CW LSTM 2.37±0.00 114.5±0.4 26.6±0.1 1.43±0.00 0.10±0.00 0.30±0.00
Transformer 2.36±0.00 114.1±0.6 26.7±0.1 1.43±0.00 0.09±0.00 0.30±0.00
TPC 1.78±0.02∗∗ 63.5±4.3∗∗ 21.7±0.5∗∗ 0.70±0.03∗∗ 0.27±0.02∗∗ 0.58±0.01∗∗

MIMIC-IV

Mean 5.24 474.9 77.7 2.80 0.00 0.00
Median 4.60 216.8 86.8 2.09 -0.12 0.00
LSTM 3.68±0.02 107.2±3.1 65.7±0.7 1.26±0.01 0.15±0.01 0.43±0.01
CW LSTM 3.68±0.02 107.0±1.8 66.4±0.6 1.23±0.01 0.15±0.01 0.43±0.00
Transformer 3.62±0.02 113.8±1.8 63.4±0.5 1.21±0.01 0.18±0.01 0.45±0.00
TPC 2.39±0.03∗∗ 47.6±1.4∗∗ 46.3±1.3∗∗ 0.39±0.02∗∗ 0.40±0.02∗∗ 0.78±0.01∗∗

3.7 Results

In this section, I will present analyses of the model in several ways. Firstly, I report the
overall performance and make comparisons against a set of baselines. Next, I examine the
role of the loss function. Finally, I performed a set of ablation studies to find out which
components of the model architecture contribute the most to its success.

3.7.1 TPC Performance on Length of Stay

The TPC model outperforms all of the baseline models on every metric on both data
sets (Table 3.4) – particularly those that are more robust to skewness: MAPE, MSLE
and Kappa. Discounting APACHE-IV, the best performing baseline across both data sets
is the Transformer (although the channel-wise LSTM (CW LSTM) is similar on eICU).
This is consistent with Harutyunyan et al. [46] (for CW LSTM) and Song et al. [109] (for
Transformers), who found small improvements over standard LSTMs.

Performance differences between eICU and MIMIC-IV Although the pattern of
results is remarkably similar between eICU and MIMIC-IV, there are notable differences
in the magnitudes of the metrics. These differences can be attributed to their LoS
distributions – the positive skew is more severe in MIMIC-IV (Table 3.1). This skew has a
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(a) (b)

Figure 3.8: A comparison of a subset of results from Table 3.4 showing the MSLE in blue and
the MAPE in red. (a) compares the eICU results and (b) shows MIMIC-IV.

disproportionate impact on the absolute error, which is captured in the MSE and MAD
metrics. Interestingly, the Kappa score is higher in MIMIC-IV because the model can
assign the longest stay patients to the >8 day bin, whereas eICU has more medium stay
patients in the 3-8 day range which need to be precisely placed. The most comparable
results are the MSLE and MAPE metrics, both of which penalise the proportional error,
making them more robust to shifts in the LoS distribution.

3.7.2 Ablation Studies

Table 3.5: Ablation studies of the TPC model (performed on the eICU data set). Unless
otherwise specified, the loss function is MSLE. The first subtable compares the effect of the loss
function on the TPC model (see Table A.6 in the Appendix for the MSE results of LSTM, CW
LSTM and Transformer). The second shows various TPC ablation studies. Results that are not
significantly different from the best result are highlighted in light blue. The TPC (MSLE) result
has been repeated in each subtable for ease of comparison. WS: weight sharing; "no skip": no
skip connections; "no diag.": no diagnoses, "no decay": no decay indicators.

Model MAD MAPE MSE MSLE R2 Kappa

TPC (MSLE) 1.78±0.02∗∗ 63.5±4.3∗∗ 21.7±0.5 0.70±0.03∗∗ 0.27±0.02 0.58±0.01∗∗

TPC (MSE) 2.21±0.02 154.3±10.1 21.6±0.2 1.80±0.10 0.27±0.01 0.47±0.01
TPC 1.78±0.02 63.5±3.8∗ 21.8±0.5 0.71±0.03∗ 0.26±0.02 0.58±0.01
Point. only 2.68±0.15 137.8±16.4 29.8±2.9 1.60±0.03 -0.01±0.10 0.38±0.01
Temp. only 1.91±0.01 71.2±1.1 23.1±0.2 0.86±0.01 0.22±0.01 0.52±0.01
Temp. only (WS) 2.34±0.01 116.0±1.2 26.5±0.2 1.40±0.01 0.10±0.01 0.31±0.00
TPC (no skip) 1.93±0.01 73.9±1.9 23.0±0.2 0.89±0.01 0.22±0.01 0.51±0.01
TPC (no diag.) 1.77±0.02 65.6±4.1 21.5±0.5 0.71±0.03∗ 0.27±0.02 0.59±0.01
TPC (no decay) 1.84±0.01 64.5±3.0 22.5±0.3 0.77±0.02 0.24±0.01 0.56±0.01
Point. (no decay) 2.90±0.18 179.1±17.4 34.2±4.6 1.80±0.05 -0.16±0.16 0.33±0.00

To understand the impact of each design choice for the TPC model, I studied the
performance under different ablations on the eICU data set. The results of these ablations
are reported in Table 3.5 and shown visually in Figure 3.9.
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Figure 3.9: A comparison of a subset of results from Table 3.5 (an ablation study on various
components of the TPC model). MSLE is shown in blue and MAPE in red.

3.7.2.1 MSLE Loss Function

The first two rows of Table 3.5 show that using the MSLE (rather than MSE) loss function
leads to significant improvements in the TPC model, with large performance gains in
MAD, MAPE, MSLE and Kappa, while conceding little in terms of MSE and R2. The
MSE results for the other models are in Appendix Table A.6; they show a similar pattern
to the TPC model.

3.7.2.2 Model Architecture

The second subtable shows that the temporal-only model is superior to the pointwise-only
model, but neither reaches the performance of the TPC model. The temporal-only model
performs much better than its weight-sharing variant, which demonstrates the importance
of having independent parameters per feature. Note that the temporal-only model with
weight sharing is the most similar to the approach taken by Razavian et al. [90], and
the results are comparable to the LSTM which is consistent with the results presented
in the paper. Removing the skip connections reduces performance by 5-25%. Together
the ablation studies demonstrate that the superior performance of the TPC model is the
culmination of multiple design decisions.

3.7.2.3 Data

I also tested the models without the diagnoses or decay indicators. Perhaps surprisingly,
I found that the exclusion of diagnoses does not seem to harm the model. This could
be because the relevant diagnoses for predicting LoS e.g. Acute Respiratory Distress
Syndrome (ARDS), are discernible from the time series alone e.g. PaO2, FiO2, PEEP
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etc. The decay indicators contribute a small (but statistically significant) benefit. Their
contribution is more obvious in the pointwise-only model where all of the metrics see
improvements of 5-23%. This difference is expected since they might reveal some of the
temporal structure to the pointwise model e.g. reveal links between up-to-date observations
and patient deterioration.

Table 3.6: Performance of the TPC model and its baselines when only some of the time series
are included (the static features and diagnoses are still included). The indicator ‘(labs)’ means
that only the laboratory tests were included, ‘(other)’ refers to everything except labs: vital
signs, nurse observations and machine logged variables. The metric acronyms, colour scheme and
confidence interval calculations are described in Table 3.4. The percentage impairment when
compared to the complete data set is shown in grey underneath the absolute values. They are
calculated with respect to the best value for the metric: 0 for MAD, MAPE, MSE and MSLE,
and 1 for R2 and Kappa. A large percentage impairment means that the model does much better
with complete data i.e. it has a high ‘percentage gain’ from the combination of both data types
compared to the ablation case.

Model MAD MAPE MSE MSLE R2 Kappa

LSTM 2.39±0.00 118.2±1.1 26.9±0.1 1.47±0.01 0.09±0.00 0.28±0.00
LSTM (labs) 2.43±0.00 123.8±1.2 27.3±0.1 1.57±0.00 0.08±0.00 0.27±0.00

(-1.7%) (-4.7%) (-1.5%) (-6.8%) (-1.1%) (-1.4%)
LSTM (other) 2.41±0.00 120.2±0.7 27.3±0.1 1.49±0.00 0.07±0.00 0.27±0.00

(-0.8%) (-1.7%) (-1.5%) (-1.4%) (-2.2%) (-1.4%)

CW LSTM 2.37±0.00 114.5±0.4 26.6±0.1 1.43±0.00 0.10±0.00 0.30±0.00
CW LSTM (labs) 2.42±0.00 124.4±0.7 27.0±0.1 1.57±0.00 0.08±0.00 0.28±0.00

(-2.1%) (-8.6%) (-1.5%) (-9.8%) (-2.2%) (-2.9%)
CW LSTM (other) 2.41±0.00 120.6±0.8 27.1±0.1 1.51±0.00 0.08±0.00 0.29±0.00

(-1.7%) (-5.3%) (-1.9%) (-5.6%) (-2.2%) (-1.4%)

Transformer 2.36±0.00 114.1±0.6 26.7±0.1 1.43±0.00 0.09±0.00 0.30±0.00
Transformer (labs) 2.42±0.00 121.0±0.7 27.3±0.1 1.56±0.00 0.07±0.00 0.27±0.00

(-2.5%) (-6.0%) (-2.2%) (-9.1%) (-2.2%) (-4.3%)
Transformer (other) 2.40±0.00 118.3±0.6 27.3±0.1 1.50±0.00 0.07±0.00 0.27±0.00

(-1.7%) (-3.7%) (-2.2%) (-4.9%) (-2.2%) (-4.3%)

TPC 1.78±0.02 63.5±4.3 21.7±0.5 0.70±0.03 0.27±0.02 0.58±0.01
TPC (labs) 1.85±0.01 72.0±2.2 22.5±0.2 0.81±0.01 0.24±0.01 0.55±0.00

(-3.9%) (-13.4%) (-3.7%) (-15.7%) (-4.1%) (-7.1%)
TPC (other) 1.81±0.02 68.5±4.7 21.8±0.3 0.77±0.03 0.26±0.01 0.57±0.01

(-1.7%) (-7.9%) (-0.5%) (-10.0%) (-1.4%) (-2.4%)

Finally I performed ablations on the type of time series variable that I included:
laboratory tests only (labs), which are infrequently sampled, and all other variables (other)
which include vital signs, nurse observations, and automatically recorded variables (e.g.
from ventilator machines). This shows how well each model can cope with time series
exhibiting different periodicity and sampling frequencies. The results are shown in Table 3.6
and Figure 3.10. The TPC model has the largest percentage gain when the labs and other
variables are combined. This suggests that the TPC model is best able to exploit EHR
time series with different temporal properties.
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Figure 3.10: A comparison of a subset of MSLE results from Table 3.6.

When examining the results for LSTM and CW LSTM in more detail, we can see that
the CW LSTM only has an advantage when the model has to process different types of
time series simultaneously. This supports the hypothesis that the CW LSTM is better
able to cope when there are varying frequencies in the data, as it can tailor the processing
to each. When the inter-feature variability is small (the same type of time series) they
perform similarly.

It is unsurprising that the Transformer does better than the LSTM when combining
data types, as it can directly skip over large gaps in time to extract a trend in lab values,
while simultaneously attending to recent time points for the processing of other variables.

The TPC is the most successful model; its inherent periodic structure helps it to extract
useful information from all of the variables. The CW LSTM and Transformer do not
have this in their architectures, making the derivation more obscure. The importance of
periodicity is discussed in more detail in Section 3.9.

3.7.3 Mortality and Multitask Performance

I investigated adding in-patient mortality as a side-task to improve LoS prediction. Table 3.7
shows the TPC performance both on single-task mortality prediction, as well as the multi-
task setting. I observed first that TPC achieves good performance on mortality alone.
Comparing the impact on LoS forecasting in the multi-task setting, I saw significant
improvements on every metric. Multi-task performance for all baselines is reported in
Tables A.7 and A.8 in the Appendix, where the multitask training confers a more modest
benefit.
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Table 3.7: Performance of the TPC model in the multitask setting. I compared the performance
of each model on individual tasks (mortality only on the first line; LoS only on the second) to the
multitask setting (third line). The performance of the baseline models are in Tables A.7 and A.8.

In-Hospital Mortality Length of Stay
Data AUROC AUPRC MAD MAPE MSE MSLE R2 Kappa

eICU
0.864±0.001 0.508±0.005 – – – – – –
– – 1.78±0.02 63.5±3.8 21.8±0.5 0.71±0.03 0.26±0.02 0.58±0.01
0.865±0.002 0.523±0.006∗∗ 1.55±0.01∗∗46.4±2.6∗∗18.7±0.2∗∗0.40±0.02∗∗0.37±0.01∗∗0.70±0.00∗∗

MIMIC-IV
0.905±0.001 0.691±0.006 – – – – – –
– – 2.39±0.03 47.6±1.4 46.3±1.3 0.39±0.02 0.40±0.02 0.78±0.01
0.918±0.002∗∗0.713±0.007∗∗ 2.28±0.07∗ 32.4±1.2∗∗42.0±1.2∗∗0.19±0.00∗∗0.46±0.02∗∗0.85±0.00∗∗

3.8 Further Analyses

In this section, I further explored the performance and behaviour of the TPC model for
LoS prediction on the eICU data set. I tested its capacity to exploit smaller data sets,
explore which features it uses, and provide a visualisation of the reliability of the model.
Finally, I simulated the potential use of the model for bed planning.

3.8.1 Training Data Size

The TPC model consistently outperforms the baselines when the training data is small,
but I noticed even greater advantage for big data. I tested the TPC, LSTM, CW LSTM,
and Transformer models with 6.25%, 12.5%, 25%, 50%, and 100% of the eICU training
data. TPC maintains the best test performance on all data sizes. Figure 3.11 shows the
effect on MSLE (the full results for all metrics are included in Table A.5).

Figure 3.11: The effect of changing the training data size on the LSTM, CW LSTM, Transformer,
and TPC model performance on the eICU data. Only the MSLE is shown for clarity, however
the other metrics are shown in Table A.5. Note that the performance of the CW LSTM and
Transformer models are so similar that the curves are superimposed.
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3.8.2 Feature Importance

I used the integrated gradients method [112] to calculate feature attributions for the LoS
estimates in the eICU data set. This method computes the importance scores φIGi by
accumulating gradients interpolated between a baseline input b (intended to represent the
absence of data) and the current input x:

φIGi (ψ,x,b) =

diff. from baseline︷ ︸︸ ︷
(xi − bi) ×

∫ 1

α=0

acc. local grad.︷ ︸︸ ︷
δψ(b+ α(x− b))

δxi
dα (3.9)

where the TPC model is represented as ψ. I used the mean feature values as my baseline
input vector. I took the absolute attribution values when a single LoS prediction is made
for each patient at 24 hours. I aggregated by taking the mean along the time dimension
and then the patient dimension to obtain Figure 3.12. The background and intuition
behind the method is explained clearly by Sturmfels et al. [111].

Figure 3.12: Top 25 most important features to the TPC model in the eICU data set.

Analysing Figure 3.12, we can see that the top features are all strong indicators of organ
failure: troponin I is a specific biomarker of myocardial infarction; peak inspiratory pressure,
O2 L/%, TV/kg IBW, plateau pressure, PEEP and tidal volume indicate mechanical
ventilation (on account of respiratory failure); PTT, ALT (SGPT), AST (SGOT) and
alkaline phosphatase suggest liver disease; and high BUN and bilirubin levels point towards
kidney failure. Additionally we see infection markers such as lactate, basophils and
eosinophils which could indicate sepsis. Both multi-organ failure and sepsis are known
causes of extended LoS in the ICU [9].
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3.8.3 Evaluation by Use-Case

I have reported aggregate performance metrics indicating strong performance of the TPC
model for overall LoS forecasting. In this section, I provide further evaluations tailored to
two potential users – an individual ICU clinician, and a bed manager for the unit.

3.8.3.1 Individual-Level Reliability

Although aggregate measures of performance are typically reported, these can mask
underlying variability in model performance. Such variability can undermine trust or
result in unsafe applications [105]. In this section, I think of a clinician who wishes to
interpret the prediction of the system for an individual patient. I broke down the aggregate
performance metrics based on factors which will be readily-available at the time of the
prediction. Specifically, I visualised the MAPE (chosen for its interpretability) as a function
of the time since admission and the predicted remaining LoS.

Figure 3.13: Mean absolute percentage error as a function of days since admission and predicted
remaining LoS on the eICU data set.

Figure 3.13 shows an example for the TPC model on eICU. We can see that high
predicted remaining LoS on the first day of a patient’s stay can be quite unreliable, with
performance rapidly improving over time. Additional investigation revealed these initial
predictions to be under -predictions, indicating that it is challenging to accurately forecast
very long LoS for patients on their first day. The long tail of LoS in the data set reflects the
abundance of short-stay patients. The model therefore seems to wait for 1-2 days of data
to justify a long LoS prediction. The system can therefore be equipped with instructions
indicating that a high predicted remaining LoS on the first day should not be acted upon.
This could complement information provided on a model card [71, 105].
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3.8.3.2 ICU-Level Bed Management

From the perspective of a bed manager, aggregate performance of the model is important:
an over-prediction for one patient could be offset by an under-prediction for another,
resulting in the same net bed availability. To investigate this, I performed a simulation
study. I ran 500 ICU simulations by randomly selecting 16 examples from the eICU test
set to form a ‘virtual cohort’. The number 16 was chosen because US hospitals have,
on average, 24 ICU beds [125] with an occupancy rate of 68% [44]. Figure 3.14 shows
the number of patients remaining in the ICU (of the selected cohort; I do not visualise
incoming ICU admissions) using their true remaining LoS (blue). I computed the error
(red) between the predictions (green) and true values. The model is well calibrated when
predicting patients who are going to stay for at least 1 day. After this, the model tends to
under-predict the occupancy by approximately 0.8 patients, corresponding to a small bias
towards under-estimating the remaining LoS.

Figure 3.14: ICU simulation. I show the number of patients remaining in the ICU over time
from an initial cohort of 16 random eICU patients from 500 simulations. The shaded regions
show the standard deviation across the runs. ‘Error’ is calculated from ‘True’ minus ‘Predictions’.

3.9 Discussion

I have shown that the TPC model outperforms all baseline models in all task settings
(LoS, mortality or multitask) on both the eICU and MIMIC-IV data sets. To explain the
success of TPC, I start by examining the parallel architectures in the TPC model. Each
component has been designed to extract different information: trends from the temporal
convolutions and inter-feature relationships from the pointwise convolutions. The eICU
ablation studies reveal that the temporal element is more important, but I stress that
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their contributions are complementary since the best performance is achieved when they
are used together.

Next, I highlight that the temporal-only model far outperforms its most direct com-
parison, the CW LSTM, on all metrics. Theoretically, they are well matched because
they both have feature-specific parameters but are restricted from learning cross-feature
interactions. To begin to explain this, we can consider how the information flows through
the model. The temporal-only model can directly step across large time gaps, whereas the
CW LSTM is forced to progress one timestep at a time. This gives the CW LSTM the
harder task of remembering information across a noisy EHR with distracting signals of
varying frequency. In addition, the temporal-only model can tune its receptive fields for
improved processing of each feature thanks to the skip connections (which are not present
in the CW LSTM).

Even the hyperparameter search results (Appendix A.1) for the TPC model are
interesting, because the best model was found to have 9 layers and a kernel size of 4. This
means that the temporal convolutions in the final layer are learning relationships over a
receptive field size of at least 28 hours3. This is long enough for a single convolution to
span over one day to extract useful trends directly from lab results.

The difference in performance between the temporal-only model with and without
weight sharing provides strong evidence that assigning independent parameters to each
feature is important. Some EHR time series are irregularly and sparsely sampled, and
can exhibit considerable variability in the temporal frequencies within the underlying
data (evident in Figure 3.7). This presents a challenge for any model, especially if it is
constrained to learn one set of parameters to suit all features. The relative success of
the CW LSTM over the standard LSTM when processing disparate time series – but not
similar – also lends weight to this theory.

However, the assignment of independent parameters to each feature does not explain
all the successes of TPC e.g. the TPC model can process disparate time series and gain
more marginal performance than the CW LSTM (Table 3.6). We need to consider that
periodicity is a key property of EHR data – this is true in both the sampling patterns and
in the underlying biology e.g. medication schedules, sleep cycles, meals etc. The temporal
component of the TPC model is the only architecture with an inherent periodic structure
(from the stacked temporal filters) which makes it much easier to learn EHR trends. By
comparison, a single attention head in the Transformer model does not look at time points
a fixed distance apart, but can take an arbitrary form. This is a strength for natural
language processing, given the variety of sentence structures possible, but it does not help

3The receptive field for a single layer can be calculated with d(k− 1) + 1, where d is the dilation and k
is the kernel size. For the final TPC layer this is 9(4 − 1) + 1 = 28 hours, since d = n. In reality, the
receptive field can capture much longer than 28 hours because the temporal convolutions are stacked on
top of convolutions that can also look backwards in time and so on.
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the Transformer to process EHRs.
Additionally, I have shown that the TPC model outperforms baselines on in-hospital

mortality both as a standalone task and in combination with LoS. The performance on
both mortality and LoS is significantly better in the multitask setting (this is consistent
with past works [46, 106]) because multitask learning helps to regularise the model and
reduce the chance of overfitting [98]. Adding further tasks may be a valid strategy to
improve LoS performance.

Finally, I reiterate that using MSLE loss instead of MSE greatly mitigates for positive
skew in the LoS task, and this benefit is not model-specific (all of the baselines perform
better with MSLE – see Table A.6). This demonstrates that careful consideration of the
task – as well as the data and model – is an important step towards building useful tools
in healthcare.

3.10 Summary

I proposed and evaluated a new deep learning architecture, which I call ‘Temporal Point-
wise Convolution’ (TPC). TPC combines temporal convolutional layers with pointwise
convolutions to extract temporal and inter-feature information. I have shown that the
TPC model is well-equipped to analyse EHR time series containing missingness, differing
frequencies and sparse sampling. I believe that the following four aspects contribute the
most to its success:

1. The combination of two complementary architectures that are able to extract different
features, both of which are important.

2. The ability to step over large time gaps.

3. The capacity to specialise processing to each feature (including the freedom to select
the receptive field size for each).

4. The rigid spacing of the temporal filters, making it easy to derive trends.

From a clinical perspective, I have contributed to the advancement of LoS prediction
models, a prerequisite for automated bed management tools. Improving the practice of bed
management promises cost reduction [44] and better resource allocation [69] worldwide.
From a computational perspective, I have provided key insights for retrospective EHR
studies, particularly where LSTMs are the currently model of choice. In the broader
context of machine learning for healthcare I have demonstrated that careful consideration
of the complexities of health data is necessary to gain state-of-the-art performance.
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CHAPTER 4

Graph Representation Learning

This chapter presents my work on using graph representations to help exploit sparse
data in the EHR. In the earlier phases of my PhD, I noticed that work on predicting
patient outcomes in the ICU focuses heavily on the physiological time series and basic
demographics (and I did the same in my last chapter). This is probably because these
data types already have well-established architectures for extracting good representations
e.g. the LSTM. However, in the context of EHRs, it could mean that models are missing
out on rich sources of additional information such as diagnoses and medications, which are
usually sparse. When I did see sparse data used, they were usually heavily condensed and
fused in the final stages of a model. Therefore these models were not given a chance to use
the diagnosis information to help process the time series and vice versa. Nor would they
be able to learn from rarer disease patterns because there were too few training examples.

Therefore, I began to think about how to solve the problem of exploiting sparse data in
the EHR. I initially discussed many of these ideas with Petar Veličković, who was keen to
be involved in the project. I had settled on a preliminary version of this idea – using graph
representation learning for sparse data processing in the EHR – by the time I attended
NeurIPS in 2018. During that conference, Petar connected me with another PhD student
called Catherine Tong, who was studying at Oxford. She decided to come onboard the
project and from that point we worked together as joint first co-authors on the work
presented in this chapter. We split the work as follows: I was responsible for the data
pre-processing (Section 4.5) and the construction of the diagnosis graph (Section 4.4.1),
whereas Catherine was responsible for implementing the LSTM-GNN (Section 4.4.2).
The experimentation was truly a collaborative effort, meaning that we both conducted
experiments and closely discussed the model development and results throughout. This
chapter has been adapted from text written by me in the corresponding paper, with the
notable exception of Section 4.4.2 which was originally written by Catherine, but I have
made modifications for the purposes of this dissertation.
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4.1 The Difficulty of Using Sparse Data

The past decade has seen growing interest in patient outcome prediction, particularly in the
Intensive Care Unit (ICU). This is following the increased availability of Electronic Health
Records (EHRs) and the drive to minimise preventable deaths through the use of early
warning systems [72, 108]. Most prior works have focused on a small subset of features
in the EHR [82] – namely, the physiological time series data (especially following the
publication of pre-processing pipelines e.g. Harutyunyan et al. [46]). This is problematic
because the resulting models can miss clinically important information, leading to poorer
clinical outcomes [87].

Among the frequently overlooked (but very informative) data are the diagnoses, medi-
cations and surgical procedures. They are difficult to use for two reasons:

1. The large number of features makes distinguishing relevant comorbidity patterns
combinatorially difficult1.

2. The model does not have enough data on rare diseases.

The common approach has been to throw away the long tail of the distribution (shown
in Figure 4.1) during pre-processing and concatenate the remaining features (often via
an encoder network) to the main part of the model at a late stage. Unfortunately this
approach is always a compromise between the difficulty of the modelling task and the
amount of valuable data that is thrown away.

Figure 4.1: The distribution of diagnosis frequency in our data is positively skewed. The mean
number of samples per diagnosis is 229 (shown in red) which is not enough for most deep learning
models to learn from. Note that the y axis has been truncated (the maximum value is in fact
79,778).

1The average patient in eICU has only 9 recorded diagnoses, but there are 4,172 distinct diagnoses in
our cohort.
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4.2 Key Contributions

I wanted to improve on this approach toward sparse information in the EHR, taking
diagnoses as an example. When designing the model, I took inspiration from clinicians,
who tend to rely on their past experience of treating similar patients when making clinical
judgements. I captured this similarity concept by constructing a patient graph where
the nodes are patients and the edges express relatedness in diagnoses. We exploited this
information with a hybrid architecture consisting of a Long Short-Term Memory (LSTM)
[50] network for extracting temporal features, composed with a Graph Neural Network
(GNN) [38, 101] for extracting the patient neighbourhood information. This represents a
novel application of GNNs in healthcare. We demonstrated that LSTM-GNNs outperform
the LSTM-only baseline on the LoS prediction task when using data from the first 24 hours
of the ICU stay. More generally, our results indicated that exploiting information from
neighbouring patient cases using graph neural networks is a promising research direction,
yielding tangible returns in supervised learning performance on Electronic Health Records.

While I focused on diagnosis information, our method can easily be extended to
other sparse medical data such as shared medications. Our code can be found at https:
//github.com/EmmaRocheteau/eICU-GNN-LSTM.

4.3 Related Work

Our work is motivated by the following areas of related work:

Graph Neural Networks GNNs are a subclass of neural networks which operate
on graph-structured data as input. The general principle is to apply a transformation
function to each node representation in the graph, before aggregating information between
neighbouring nodes. Different GNNs vary in their node transformation and neighbourhood
aggregation functions [130]. In our work, we selected four popular GNNs to model the
similarity relationships between patients: Graph Convolutional Networks (GCN) [58],
Graph Attention Networks (GAT) [123], GraphSAGE [45], and Message Passing Neural
Networks (MPNN) [33]. A full background and explanation of all these GNN architectures
can be found in Section 2.4.

Recurrent Neural Networks RNNs (particularly LSTMs) have so far been the most
popular model for patient outcome prediction from time series, and they have achieved
state-of-the-art results on the MIMIC-III and eICU data sets [46, 87, 106]. We therefore
selected an LSTM (very similar to that used in Harutyunyan et al. [46]) to model the time
series component. Again, the relevant background for LSTMs can be found in Section 2.2.
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Combination Models Combining sequential modelling with GNNs has been explored
by several works outside of the healthcare domain in recent years [39, 63, 79, 132]. However,
since we assumed the graph to be static in my case (a reasonable assumption since patient
diagnoses do not vary much during a typical ICU stay), this calls for a simpler modelling
approach than these works.

Graphical Representation of Clinical Data This is a young and exciting research
domain [103] that has so far focused on injecting medical knowledge in the form of
knowledge graphs, or structuring the EHR itself as a graph, as in Choi et al. [14] (note
that these applications do not employ any inter-patient data sharing). The only example
of a patient graph appearing in the literature before ours was Malone et al. [68] who solved
the task of missing data imputation using embedding propagation [26]. This was done as
a separate step (i.e. their approach was not end-to-end) before using logistic regression
and ridge regression as downstream prediction models.

4.4 Methods

Figure 4.2: Approach Overview. First, I constructed a patient graph, which becomes the input
to an end-to-end LSTM-GNN model. Through the LSTM-GNN, each node’s temporal features
are encoded by a temporal encoder followed by a graph encoder, and the static features are
encoded separately. Finally, these are concatenated and passed to a fully-connected layer for
prediction.

Figure 4.2 gives an overview of our approach. I started with a set of static and temporal
features for each patient. My first step (top-left in Figure 4.2) was to define a patient graph
construction, G, where related patients (nodes) are connected by edges. Next, we passed the
patient graph as input to the LSTM-GNN, which was trained end-to-end. The LSTM-GNN
produced three types of embeddings: the LSTM, GNN and static embeddings, which were
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concatenated and passed to a fully-connected layer to obtain per-node predictions. In the
following, I provide the technical details of both the graph construction and LSTM-GNN
training procedures.

4.4.1 Diagnosis Graph Construction

I started by assigning a pairwise similarity score between all patients. First, I transformed
the diagnoses into a multi-hot vector for each patient (Section 4.5.2), resulting in a binary
diagnosis matrix D ∈ RN×m where N is the number of patients and m is the number of
unique diagnoses. The similarity scoreMij between nodes i and j was defined as

Mij = a

Shared Diagnoses︷ ︸︸ ︷
m∑
µ=1

(
DiµDjµ(d−1µ + c)

)
−

All Diagnoses︷ ︸︸ ︷
m∑
µ=1

(
Diµ +Djµ

)
(4.1)

where dµ is the frequency of diagnosis µ, and a and c are tunable constants. The first term
positively rewards shared diagnoses. It includes an inverse of the frequency term (d−1µ )
which increases the weighting of rare diagnoses. The reason for this is because the model
may be able to learn the key features of common diseases using the traditional method, but
for rare diseases this will be the only representation. The second term penalises the total
number of diagnoses – this is to prevent patients with many diagnoses becoming ‘hubs’ of
high connectivity, attracting imprecise matches with several non-shared diagnoses. Note
that the rationale for these choices are explained in much more detail in the dedicated
paragraph at the end of this subsection.

I examinedM under a k-Nearest Neighbour (k-NN) scheme to establish k edges per
node. The parameters a, c and k were treated as hyperparameters (c = 0.001, a = 5 and
k = 3 in the final model). I observed that as a is increased, the model tends to favour
forming ‘hubs’ with common comorbidities. Similarly, when c is increased, it takes the
focus away from rare diseases (because c corresponds to a minimum weighting that any
disease will always contribute to the similarity score). Note that this method always
inserts self-loops into the graph. This will mean that the GNN can always propagate the
patient’s own features so that they can be used for the downstream prediction tasks.

I also experimented with alternative graph construction methods, such as applying a
score threshold for edges (more akin to Malone et al. [68]), or using BERT [25] (a type of
Transformer [121], explained in Section 2.5.1) to encode diagnosis texts prior to calculating
the similarity. Empirically I found the method presented in Equation 4.1 to work best
through manual inspection of the resultant graph and preliminary experimentation.
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Why is it desirable to emphasise rare diagnoses? If we take the example of a
classic metabolic syndrome, where multiple diagnoses tend to occur together e.g. type
2 diabetes, hypertension, obesity, non-alcoholic fatty liver disease (NAFLD), polycystic
ovary syndrome (PCOS) etc. If all diagnoses were treated equally, patients sharing a
metabolic syndrome would automatically match by default, since there are many diagnosis
codes in common (Figure 4.3). Any additional rare diagnoses that do not fit the pattern
would be ignored:

Figure 4.3: A graph which treats diagnosis codes equally irrespective of prevalence would match
the two patients who share the metabolic syndrome (red edge). However, in this case the rare
diagnosis of sub-arachnoid haemorrhage (SAH) is far more predictive of poor outcomes in the ICU.
Therefore, a graph which up-regulates rare diagnoses (blue edge) will not miss these potentially
important associations.

This is missing a major opportunity to add value when using the patient graph approach.
The metabolic syndrome is sufficiently common that the model could learn the recognise
the phenotype and its association to patient outcomes using the time series and static
data alone. By contrast this is not possible for the rare diagnoses because the model does
not have sufficient training examples to reliably learn a representation. Therefore, the
association needs to be presented in a more direct way i.e. by enabling explicit access to
other examples of relevant rare diseases via a GNN at the time of prediction.

4.4.2 LSTM-GNNs

Having constructed the patient graph, we framed the patient outcome prediction problem
as a node prediction task. We use LSTM-GNN, a hybrid model consisting of temporal
and graph encoding components (summarised in Figure 4.4). We assumed the input of
LSTM-GNN to be a patient graph G, with each node i having time series x1, . . . ,xT ∈ RF×1

and static features s ∈ RS×1 (this includes a diagnosis vector and other variables e.g. age
and gender). F is the number of time series features, S is the number of static features
and T is the time to discharge. We can describe a forward pass through the network as
follows:
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Figure 4.4: Our LSTM-GNN architecture. The LSTM extracts temporal features from time
series data. These patient-level features are then propagated within local neighbourhoods by the
GNN. We concatenated hidden vectors from the temporal, graph and the static features to make
the prediction.

The time series x are first passed through a Bidirectional LSTM (BiLSTM) [40], which
outputs a sequence of hidden state vectors h ∈ RM×T in the forward and reverse directions,
where M is the LSTM hidden size. The vectors corresponding to the last timestep are
concatenated to produce hL ∈ R2M×1 the LSTM temporal embedding for patient i.

Next, the GNN component propagates each node’s temporal embedding within its
neighbourhood. This function varies between GNNs, however, the aim is always to apply
a local smoothing. That is, the features hL are re-weighted with the feature vectors in its
local neighbourhood to produce the new node representation hN .

Meanwhile, we passed the static input s through a fully-connected layer to compute
hS, before concatenating our learnt representations together, hC = (hL||hN ||hS). Finally,
hC is passed through a fully-connected layer to obtain a prediction ŷ.

We trained the LSTM-GNN in an end-to-end and scalable fashion. To allow for mini-
batch training of the LSTM, we adopted a neighbourhood sampling procedure proposed
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by Hamilton et al. [45]. With each iteration, we uniformly sampled a fixed-size set of
neighbours in the graph, which fixes computation and time costs per iteration, thus making
the LSTM-GNN scalable to large patient graphs. We took an inductive learning approach.
During training, we only sampled nodes and their neighbourhood from the training set.
During testing, we sampled neighbours from the entire data set but we only evaluated
performance on the test nodes.

Enpirically we noticed that the LSTM performance could degrade with the addition of
a GNN. To encourage learning from both components, we defined the loss function as:

L = LLSTM-GNN + αLLSTM (4.2)

where LLSTM-GNN is the loss on the full model prediction ŷ, LLSTM is the loss on the
prediction made by the LSTM component ŷLSTM (computed by passing hL through a
distinct fully-connected layer), and α is treated as a hyperparameter. For the mortality
task, the loss function was binary crossentropy, whereas for LoS it was the squared
logarithmic error as this was found to mitigate for positive skew in the previous chapter
(Section 3.7.2.1).

4.5 Data

As in the previous chapter, I used the eICU Collaborative Research Database [83], a
multi-centre data set collated from 208 hospitals in the United States (for further details
see Section 3.5.1). I selected static features, time series and diagnoses from 89,123 adult
patients (>18 years) with an ICU LoS of at least 24 hours and at least one recorded
observation. If the patient had multiple admissions I selected one at random. This was
essential because otherwise the patient could be linked to a neighbour which corresponds
to a previous or future self in the graph. The data set was divided at the patient level
such that 70%, 15% and 15% were used for training, validation and testing respectively. A
summary of the cohort can be found in Table 4.1.

4.5.1 Static Features

I initially extracted 20 static features (shown in Table 4.2). As in Section 3.5.3.1, discrete
and continuous variables were scaled to the interval [-1, 1], using the 5th and 95th
percentiles as the boundaries, and absolute cut offs were placed at [-4, 4]. Binary variables
were coded as 1 and 0. Categorical variables were converted to one-hot encodings.
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Table 4.1: eICU cohort summary.

Number of patients 89,123
Train 62,385
Validation 13,369
Test 13,369

Gender (% male) 54.4%
Age in years (mean) 63.6
LoS in days (mean) 3.69
LoS in days (median) 2.28
In-hospital mortality 9.52%

Number of node features 38
Time series 18
Static 20

4.5.2 Diagnoses

I extracted diagnoses in a similar way to the previous chapter (Section 3.5.3.2), but with
a more generous prevalence cut-off of 0.5%. To recap, the diagnosis coding in eICU
is hierarchical e.g. “neurologic | disorders of vasculature | stroke | hemorrhagic stroke |
subarachnoid hemorrhage | with vasospasm”. To preserve the hierarchical structure, I
assigned separate features to each class level i.e. ‘neurologic’ and ‘disorders of vasculature’
etc. are their own features. I then transformed the data into multi-hot encodings with each
position indicating ‘0’ or ‘1’ depending on whether a particular diagnosis was present:

Figure 4.5: An example showing an EHR diagnosis vector.

This produces a vector of size 4,436 with an average sparsity of 99.5%. Note that if
a disease does not make this threshold, it is still included via any parent classes that do
qualify (e.g. in the above example we retain everything up to ‘subarachnoid hemorrhage’).
To prevent leaking from future data into the predictions, I only included diagnoses that
were recorded before the 24th hour in the ICU.
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Table 4.2: Non-time varying features. Age >89, Null Height and Null Weight were added as
indicator variables to indicate when the age was more than 89 but has been capped, and when
the height or weight were missing and have been imputed with the mean value.

Feature Type Source Table

Gender Binary patient
Age Discrete patient
Hour of Admission Discrete patient
Height Continuous patient
Weight Continuous patient
Ethnicity Categorical patient
Unit Type Categorical patient
Unit Admit Source Categorical patient
Unit Stay Type Categorical patient
Physician Speciality Categorical apachepatientresult
Eyes Discrete apacheapsvar
Motor Discrete apacheapsvar
Verbal Discrete apacheapsvar
Meds Discrete apacheapsvar
Intubated Binary apacheapsvar
Ventilated Binary apacheapsvar
Dialysis Binary apacheapsvar
Age >89 Binary
Null Height Binary
Null Weight Binary

4.5.3 Time Series

For each admission, 18 time-varying features (Table 4.3) were extracted from each hour of
the stay, and up to 24 hours before. The variables were processed in the same manner as
the static features. In general, the sampling was irregular, so the data was re-sampled
according to one hour intervals and forward-filled (as in Section 3.5.3.3).

4.6 Experiments

4.6.1 Prediction Tasks

We evaluate the performance of all our models on both length of stay (LoS) and in-hospital
mortality. By including two different tasks we give a more holistic impression of the
performance of the models. Note that mortality is a relatively easier task than mortality.
This is covered in Section 3.3.
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Table 4.3: Time series features. ‘Time in the ICU’ and ‘Time of day’ were not part of the tables
in eICU but were added later as helpful indicators to the model.

Feature Source Table

Bedside Glucose lab
FiO2 respiratorycharting
SaO2 respiratorycharting
Non-Invasive Diastolic vitalaperiodic
Non-Invasive Mean vitalaperiodic
Non-Invasive Systolic vitalaperiodic
CVP vitalperiodic
Heart Rate vitalperiodic
Respiration vitalperiodic
st1 vitalperiodic
st2 vitalperiodic
st3 vitalperiodic
Systemic Diastolic vitalperiodic
Systemic Mean vitalperiodic
Systemic Systolic vitalperiodic
Temperature vitalperiodic
Time in the ICU
Time of day

4.6.2 Evaluation Metrics

Length of Stay We reported on 6 LoS metrics: mean absolute deviation (MAD), mean
absolute percentage error (MAPE), mean squared error (MSE), mean squared log error
(MSLE), coefficient of determination (R2) and Cohen Kappa Score. See Section 3.6.3.1 for
further details.

In-Hospital Mortality For mortality we reported the area under the receiver operating
characteristic curve (AUROC) and the area under the precision recall curve (AUPRC).
See Section 3.6.3.2 for more detail.

4.7 Results

4.7.1 LSTM-GNN Performance on Mortality and Length of Stay

Table 4.4 shows our main results table where we compared the LSTM-GNN performance
to two LSTM baselines [46, 106].
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Table 4.4: Performance of various LSTM-GNN models. We compared these models to an LSTM baseline (with and without−d diagnosis
concatenation). The error margins are 95% confidence intervals (CIs) from 15 independent training runs. The best results are highlighted in blue.
If a result is statistically different from the LSTM (with diagnoses) on a two-tailed t-test (p < 0.05), then it is indicated with ‡ or † to show better
or worse performance respectively.

In-Hospital Mortality Length of Stay
Model AUROC AUPRC MAD MAPE MSE MSLE R2 Kappa

LSTM−d 0.837±0.001† 0.390±0.004† 1.97±0.01† 49.4±0.6 17.6±0.2† 0.398±0.004† 0.089±0.008† 0.224±0.006†
LSTM 0.858±0.001 0.429±0.002 1.95±0.01 49.8±0.9 17.0±0.1 0.382±0.001 0.118±0.003 0.245±0.006
LSTM-SAGE 0.851±0.003† 0.426±0.010 1.87±0.00‡ 50.9±0.5† 14.8±0.1‡ 0.377±0.002‡ 0.119±0.005 0.237±0.006
LSTM-GAT 0.854±0.001† 0.427±0.003 1.86±0.00‡ 49.7±0.3 14.6±0.1‡ 0.371±0.001‡ 0.129±0.004‡ 0.258±0.004‡
LSTM-MPNN 0.852±0.001† 0.433±0.004 1.86±0.01‡ 50.5±1.3 14.5±0.1‡ 0.369±0.001‡ 0.136±0.007‡ 0.261±0.005‡

Table 4.5: Performance of various dynamic LSTM-GNN−ds compared to LSTM−d. These models do not have diagnoses in their static features;
they create the graph from the temporal features alone.

In-Hospital Mortality Length of Stay
Model AUROC AUPRC MAD MAPE MSE MSLE R2 Kappa

LSTM−d 0.837±0.001 0.390±0.004 1.97±0.01 49.4±0.6 17.6±0.2 0.398±0.004 0.089±0.008 0.224±0.006
Dyn. LSTM-GCN−d 0.839±0.001‡ 0.388±0.002 1.96±0.01‡ 50.2±1.0 17.0±0.1‡ 0.387±0.002‡ 0.117±0.007‡ 0.251±0.005‡

Dyn. LSTM-GAT−d 0.832±0.001† 0.358±0.005† 1.97±0.01 50.2±1.4 17.3±0.1‡ 0.393±0.003‡ 0.105±0.007‡ 0.236±0.006‡
Dyn. LSTM-MPNN−d 0.837±0.001 0.389±0.002 1.96±0.01‡ 50.0±1.1 17.1±0.1‡ 0.389±0.002‡ 0.113±0.007‡ 0.248±0.005‡
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Figure 4.6: A subset of the results in Table 4.4 comparing the performance on one LoS metric
(MAD) and one in-hospital mortality metric (AUPRC).

The first baseline (LSTM−d) does not take any diagnoses as input2, whereas the
second baseline (LSTM) processes diagnoses according to the commonly applied encoder
concatenation approach. The first thing to note is that LSTM significantly outperforms
LSTM−d, confirming that diagnoses add predictive value to both tasks.

Importantly, all of the LSTM-GNN models demonstrate significant performance gains
compared to both LSTM baselines on the LoS task. The LSTM-MPNN in particular
demonstrates impressive performance, surpassing LSTM by 3− 15% on all LoS metrics
except MAPE. This is not particularly surprising, because the LSTM-MPNN model is
the most expressive of the GNNs evaluated, as it has the capacity to model edge features
(similarity scores from Equation 4.1) while other GNNs do not (Section 2.4.4).

Additional investigation revealed that the error reduction in the LSTM-GNN models
corresponds to long length of stays, where LSTM-GNNs were more accurate in giving
estimates for patients staying longer than 2-3 days. This explains the disproportionate
reduction in MSE but not MAPE, as the MSE is more influenced by long LoS outliers.
On mortality, the LSTM-GNN models tend to show a small (but statistically insignificant)
increase in AUPRC, but a reduction in AUROC.

The performance benefit in the LoS task but not the mortality task can be clearly
seen in Figure 4.6. This may be attributable to the increased reliance on operational
factors for LoS e.g. different discharging practices [18], which in turn depend on the
diagnoses. This is not upheld on the mortality task because the vital signs and a few
common diagnoses (which can be easily extracted from the diagnosis encoder) remain the
most reliable predictors of mortality risk.

2I use −d to denote all models which exclude the diagnosis vector from input s.
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4.7.2 Dynamic LSTM-GNNs

Until now I have proposed a fixed patient graph constructed using diagnoses. However, we
also investigated whether a useful graph can be learnt dynamically3 from the time series
alone (in the absence of diagnoses). This is to test whether the graph approach is only
useful for modelling sparse information, or whether it can be beneficial even without the
sparse data to encode. Inspired by Dynamic Graph CNNs [127], we explored a dynamic
variant of LSTM-GNN. Here we trained an LSTM on the time series x with mini-batching,
each time computing the pairwise Euclidean distance of the hidden vectors hL in the batch.
Again, I applied k-NN to obtain the graph.

Table 4.5 shows that LSTM−d and dynamic LSTM-GNN−ds generally perform similarly
on mortality, but the dynamic LSTM-GNN−ds again have an advantage on the LoS task.
We also observed that the dynamic LSTM-GCN−d model, despite not having access to
any diagnoses, performs similarly to LSTM (second row of Table 4.4). This suggests
that relating patients using a graph structure has value for modelling patient outcomes
independently of diagnoses. This is possibly because where the data is poor quality or
missing, the model can rely more on the neighbouring patients. However, the most visible
gains (Table 4.4) still come from using diagnoses for the graph construction.

4.7.3 Ablation Studies

To understand the impact of our design choices, we studied the model performance under
different ablations i.e. without the diagnosis vector component and the LSTM encoder.

Table 4.6a shows the performance of the LSTM-GNN models without a diagnosis
vector presented in the traditional way (LSTM-GNN−d). Firstly, we can see that all of the
LSTM-GNN−d models easily outperform LSTM−d, indicating that the patient graph alone
is an informative representation of diagnosis data.

When we considered the impact of the graph only vs. the combination approach (i.e.
various LSTM-GNN−ds vs. LSTM-GNNs in Table 4.4), we see that the combined approach
in the LSTM-GNNs produces the best results. However, the difference is more marginal
for the LoS task, which suggests that the graph confers the largest benefit for LoS, whereas
the encoder is more important for mortality prediction. This can be explicitly verified
by comparing the LSTM-GNN−ds to LSTM; where the LSTM-GNN−d models do indeed
outperform on LoS, but not on mortality.

Table 4.6b shows the performance of the graph on the raw time series (i.e. no LSTM
component). Both of these models perform significantly worse than their respective
LSTM-GNNs, which validates the need for an LSTM component for time series processing.

3I use the term ‘dynamic’ because the graph is calculated per mini-batch as the LSTM is training.
This is in contrast to the scoring based graph described in Section 4.4.1 which is fixed at the start of
training. Note that I do not mean that the graph is changing over the course of the patients’ time series.
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Table 4.6: Ablation Studies. (a) shows the performance of various LSTM-GNN−d models (without diagnoses). The t-tests are performed with
respect to LSTM−d. (b) shows the results when GraphSAGE and GAT operate without an LSTM i.e. we provided the raw time series as input to
the GNN. They are compared to their respective LSTM-GNN models.

(a)

In-Hospital Mortality Length of Stay
Model AUROC AUPRC MAD MAPE MSE MSLE R2 Kappa

LSTM−d 0.837±0.001 0.390±0.004 1.97±0.01 49.4±0.6 17.6±0.2 0.398±0.004 0.089±0.008 0.224±0.006
LSTM-SAGE−d 0.840±0.001‡ 0.397±0.006‡ 1.88±0.01‡ 50.7±1.2 14.9±0.1‡ 0.380±0.001‡ 0.117±0.006‡ 0.240±0.006‡
LSTM-GAT−d 0.838±0.002 0.384±0.008 1.88±0.01‡ 50.1±1.4 15.0±0.1‡ 0.383±0.003‡ 0.108±0.009‡ 0.234±0.005‡
LSTM-MPNN−d 0.836±0.001 0.392±0.003 1.87±0.01‡ 50.8±1.7 14.7±0.2‡ 0.377±0.004‡ 0.128±0.011‡ 0.255±0.008‡

(b)

SAGE 0.853±0.001 0.406±0.003† 1.96±0.00† 50.7±0.9 17.1±0.1† 0.389±0.001† 0.113±0.006 0.239±0.004
LSTM-SAGE 0.851±0.003 0.426±0.010 1.87±0.00 50.9±0.5 14.8±0.1 0.377±0.002 0.119±0.005 0.237±0.006
GAT 0.833±0.001† 0.357±0.003† 2.02±0.01† 52.2±1.0† 18.0±0.1† 0.423±0.003† 0.066±0.006† 0.186±0.006†
LSTM-GAT 0.854±0.001 0.427±0.003 1.86±0.00 49.7±0.3 14.6±0.1 0.371±0.001 0.129±0.004 0.258±0.004
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4.7.4 Interpretability

The LSTM-GAT model in particular provides a unique interpretability benefit. As
explained in Section 2.4.2, the GAT model assigns attention weights to the edges in the
graph, meaning that we can qualitatively assess what the model is examining.

Male
Age 66
Post Lumbar Spinal Surgery
Congestive Heart Failure
Hypertension
Pacemaker (position unknown)
Peripheral Vascular Disease
Deep Vein Thrombosis
Non-Insulin Dependent Diabetes
Valve Disease

Male
Age 76
Post Lumbar Spinal Surgery
Congestive Heart Failure
Hypertension
Pacemaker (position V)

Male
Age 71
Post Lumbar Spinal Surgery
Hypertension

Female
Age 60
Post Lumbar Spinal Surgery
Hypertension

Figure 4.7: An example showing graph attention weights in LSTM-GAT−d. The value of the
attention weight is indicated by the edge thickness.

Figure 4.7 depicts a 76 year-old post-lumbar spinal surgery patient and his neighbours.
It is typical for post-surgical patients to have shorter stays in the ICU [41], but this patient
has congestive heart failure which is associated with high mortality and longer recovery
times [1]. By examining the attention weights in a learned LSTM-GAT−d model, we see
that it places greatest importance on the self-node (the patient’s own data), followed by
another patient who shares his congestive heart failure diagnosis and other cardiovascular
comorbidities. Less importantly, there are two other post-surgical patients but they do
not share the heart failure diagnosis so they are downweighted. The model places slightly
greater emphasis on the older male patient. Altogether we see that the LSTM-GAT is
behaving as expected, and this could offer an important sanity-checking benefit for the
end user.

4.8 Summary

In this work, I proposed and evaluated a new LSTM-GNN approach for sparse data
processing in EHRs, using diagnoses as an example. Our results demonstrate that the
representation of diagnoses as a graph confers an independent and substantial performance
benefit when combined with the commonly applied encoder approach on the LoS task.
This makes intuitive sense when considering the different architectures because the encoder
method may be preferable for representing common comorbidities which confer strong
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correlations with the prediction task e.g. sepsis. However, the graph method provides
a context for rarer patterns of disease by directly presenting example cases in the local
neighbourhood. Note that the graph may also help to augment the data where the quality
in the original patient is poor, and offer interpretability benefits (see Section 4.7.4). Since
our approach and the traditional approach offer complementary insights, their respective
contributions can be combined to obtain better performance in the LSTM-GNN.
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CHAPTER 5

Dynamic Outcomes-Based
Clustering

This work came about after I returned to a topic that I had studied during my first year of
the PhD programme. My previous work focused on using reinforcement learning to learn
optimal ventilator settings for patients with Acute Respiratory Distress Syndrome (ARDS).
This work was never published and has been omitted from this dissertation, however, it
left me with a sense of unresolved interest in mechanical ventilation. I mentioned this to a
collaborator, Dr Ari Ercole, after working together on a project to forecast COVID-19 bed
occupancies across England in March 2020, and he was keen to help.

After Ari Ercole and Ioana Bica – a friend and fellow PhD student – came onboard
the project, we refocused our efforts to the discovery of hidden phenotypes in the data,
rather than the optimisation of ventilator settings. I exchanged ideas with Ari and Ioana
throughout, but the following work is my own, from the ideas to the experimentation and
writing of the text. I was accepted to the Learning from Time Series for Health (TS4H)
Workshop at NeurIPS 2022, and three workshops at AAAI 2023, including the Health
Intelligence (W3PHIAI) Workshop where I won Best Paper!

5.1 Why Cluster Patients?

The advancement of Electronic Health Records (EHRs) and machine learning have enabled
an increasingly data-driven and personalised approach to healthcare. One step in this
direction is to uncover patient sub-types with similar disease trajectories in a heterogeneous
population. Patients in the ICU can deteriorate rapidly over hours, minutes or even seconds.
Understanding the stability, or otherwise, of a particular physiological state at a particular
time is important in terms of flagging the potentially deteriorating patient and enabling
early intervention.
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Furthermore, randomised controlled trials (RCTs) in the ICU are overwhelmingly
negative [34, 59, 124]. One important reason for this is the extreme heterogeneity in the
ICU population. Unlike diseases such as ischaemic heart disease or COVID-19 pneumonitis
with potentially devastating but simple aetiologies, the typical intensive care patient may
have a wide variety of reasons for admission and mechanisms leading to physiological
disruption, have complex multi-system disease, complex and varied comorbidities and
treatment histories. There is a great deal of interest in finding stereotypical disease
behaviours or ‘phenotypes’ or ‘sub-phenotypes’ in the hope that these might represent
pathobiological ‘endotypes’ which may be both more homogeneous and represent a prin-
cipled substrate for individualised intervention. Data-driven phenotype discovery is a
particularly attractive idea and there have been numerous attempts to apply even rel-
atively simple clustering techniques to either routinely collected data or, more recently,
genetic, transcriptomic or metabolomic data in critical care patients. Associations with
outcome have been demonstrated which is encouraging. Furthermore there have also been
a number of areas where relatively simple clustering techniques have revealed actionable
sub-phenotypes by secondary analysis of RCT data where intervention data is also available.
For example, latent trajectory modelling of inflammatory biomarkers has revealed pro-
and anti-inflammatory sub-types of Acute Respiratory Distress Syndrome (ARDS) [29]
and these have a differential response to liberal or conservative fluid therapy policies.
Clustering of transcriptomic data has revealed patient populations in which steroid therapy
may be beneficial in sepsis [2]. Routinely collected data has also been used to find simple
trajectory clusters for sepsis based on physiological parameters [7] which have been shown
to have differential response to fluids.

Investigating the dynamic clustering of trajectories is appealing in the ICU for reasons
touched on above. However, since the ICU already generates large panels of data, temporal
trajectories are extremely high-dimensional spaces in which to undertake clustering. As
I have shown in previous chapters, temporal neural network architectures are highly
flexible models which can handle the heterogeneous population in the ICU, yielding
high predictive performance. We also have reasons to believe that there is merit in an
unsupervised approach to patient representation [70, 126]. This motivates examining a
combined supervised and unsupervised approach to patient representation as a substrate
for trajectory clustering.

Mechanical ventilation (by which, in this thesis, I take to mean invasive mechanical
ventilation) is a common and high-risk intervention in intensive care and a key area of
research although again many clinical trials [34] have been unrewarding. Mortality and
morbidity can be high and the need for treatment over time is difficult to predict: some
patients can be liberated from mechanical ventilation quickly, whereas others may need
a prolonged period of ventilation and potentially tracheostomy to allow a more gradual
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transition to spontaneous breathing. This may be multifactorial: difficult weaning from
mechanical ventilation may be due to either acute or chronic pulmonary injury, frailty
or deconditioning due to other critical illness (critical illness may increase physiological
demands on the cardiorespiratory system at the same time as being catabolic i.e. associated
with muscle breakdown and weakness and this may include respiratory muscles). The
inherent temporal patient heterogeneity is a major stumbling block for ventilation research:
the discovery of more homogeneous phenotypes is an encouraging area in the hope that
some of these phenotypes may subsequently turn out to be clinically actionable.

5.2 Key Contributions

In this chapter, I have developed a dynamic clustering approach for mechanically ventilated
patients in the Intensive Care Unit (ICU). I used a mixture of supervised, self-supervised
and unsupervised techniques to reveal key subgroups in the Amsterdam UMC critical
care data set [116]. The clusters are designed to share similarities in phenotype, trajectory
and outcomes. The assignment is dynamic, meaning that I generate a cluster for each
hour that a patient remains in the ICU. This means that if an event happens which alters
the predicted trajectory and outcomes, there will be a shift in the cluster assignment.
This is interesting, not only because it can reveal which events are associated with these
shifts, but it may allow us to gain insight into what could have happened if the ventilation
strategy had been different. This would help to improve our understanding, and direct
further study into sub-types of disease trajectory. If we can reliably sub-type a patient
early on in their admission, we can conduct intervention studies on particular sub-types
of patients. Additional clinical use cases include the development of interpretable early
warning systems to alert clinicians of deteriorating patients and designating patients to
specialised treatment protocols depending on their sub-type.

5.3 Background and Related Work

5.3.1 Mechanical Ventilation and Pulmonary Failure

Pulmonary injury is typically, but very imperfectly, described in terms of the degree of
impairment in gas exchange. However patients on mechanical ventilation are a highly
heterogeneous group, with widely differing outcomes. Some have relatively healthy lungs
e.g. if they are recovering from surgery on another organ; whereas others have varying
degrees of pulmonary failure. Pulmonary failure can be acute (e.g. ARDS) and deteriorate
rapidly, or chronic, typically evolving slowly. Unfortunately, patients on ventilators have
high mortality [74, 84] and there is no established consensus on optimal treatment strategies
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from randomised controlled trials [4]. Therefore, there is significant potential benefit of a
data-driven strategy to guide future clinical studies.

5.3.2 Temporal Clustering

Temporal clustering is the unsupervised process of partitioning time series into homogeneous
groups. When applied to clinical data, it can be challenging because the time series are
not the same length, and the data contains significant noise (both in the underlying
physiology and in the recording process). Temporal clustering approaches have been
successful previously e.g. in Parkinson’s [134], diabetes [100] and cystic fibrosis [62] and
increasingly in intensive care as discussed above. However data-driven clustering has not
been comprehensively undertaken for mechanical ventilation.

5.4 Methods

Broadly, my strategy was to train a temporal encoder to embed the patient data
at every timestep (this is analogous to returning all the hidden states for an LSTM
model). I used a mixture of supervised, unsupervised and self-supervised learning to
do this. Once the encoder training was complete, I used an unsupervised method
to cluster the embeddings, so that I get a cluster for every timestep in the patient’s
ventilation episode. My code can be found at https://github.com/EmmaRocheteau/

Mechanical-Ventilation-Clustering.
The data consisted of both time series and static features (see Section 5.5). The

supervised tasks included two binary tasks: predicting hospital mortality and the risk of
receiving a tracheostomy1, and two duration tasks: the remaining length of stay (LoS)
from timestep t, and their remaining ventilation duration (VD). This ensured that the
patient outcomes are stored within the embedding. In addition, I trained a decoder
to reconstruct timestep t and the static data. This is an unsupervised approach which
encourages the embedding to retain the patient phenotype. Finally, I predicted timestep
t+ 1, a self-supervised approach designed to embed the patient trajectory (see Figure 5.1).

5.4.1 Encoder

In recent years, LSTMs have been by far the most popular model for predicting clinical
outcomes and have achieved state-of-the-art results [46, 87, 106]. They have also been
applied to other patient prediction tasks e.g. forecasting diagnoses and medications [13, 65],
and mortality prediction [12, 46, 107]. More recently, the Transformer model [121] has
marginally outperformed the LSTM when predicting LoS [109]. In Chapter 3, I showed that

1A tracheostomy is a procedure designed for long term mechanical ventilation of a patient.
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Figure 5.1: Overview of my model. Only one timestep, t, is shown for simplicity. F and S are the
number of time series and static variables respectively. At timestep t, the static variables (yellow)
and preceding time series variables (grey) and their corresponding decay indicator variables
(orange, explained under ‘Time Series’ in 5.5.3) are given to the encoder, which produces an
embedding (green) for timestep t. This embedding is then given to the decoder networks (yellow),
forecasting network (purple) and the predictor network to obtain the four patient outcomes (red),
outlined in Section 5.4. After training is complete, the test embeddings are used for clustering.

Temporal Pointwise Convolution (TPC) outperformed both the LSTM and Transformer
models on mortality and LoS. Therefore, I chose to investigate these three encoders.

5.4.2 K-Medoids Clustering

I used a k-medoids clustering strategy to cluster the learned embeddings. K-medoids
is similar to k-means, except that it operates with medoids rather than centroids. The
relationship between centroids and medoids is similar to the relationship between means
and medians; medoids and medians will always be a true observation in the data, while
that is not necessarily the case for centroids and means. The main advantage of using
k-medoids is that the method is less sensitive to outliers than k-means, which is more
suitable in this context where the data is noisy and heavily skewed2.

Both k-means and k-medoids operate on pairwise similarities. I decided to use Euclidean
distance rather than cosine similarity. This is because intuitively, it is not only the direction
that the patient is moving in that matters, but also the distance along that axis. For
example, if a particular ‘direction’ represents acute decompensated heart failure, we also
care how severe the decompensation is.

As detailed in Section 5.6.2, I applied batch normalisation [52] to the embeddings, to
ensure that the embedding distribution remained within a reasonable range. The value of k
(5 for all models) was chosen using the elbow method (see Section C.1.1 in the Appendix).

2Preliminary experiments revealed that k-means were more likely to produce small clusters which
lay far away from the rest of the data, because it is more affected by outliers. This made the clustering
process less reliable and reproducible, which is why I opted for k-medoids clustering.
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5.5 Data

5.5.1 Amsterdam UMC Database

I used the Amsterdam UMC database version 1.0.2 [116], which contains 23,106 ICU
admissions from 20,109 patients admitted between 2003 and 2016. I selected all of the
mechanical ventilation episodes with a minimum duration of 4 hours, capping the maximum
duration after 21 days to reduce computational costs. This corresponded to 14,836 episodes
which occurred during 13,502 ICU admissions from a cohort of 12,597 unique patients. Of
the 14,836 episodes, 13,783 ended in extubation or death of the patient, 648 ended with
a tracheotomy procedure occurring within 21 days, 399 patients were still on ventilation
at 21 days, and 6 patients were converted to a non-invasive ventilation setting on the
ventilator.

I selected 31 time series features and 14 static features. The data were split such that
70%, 15% and 15% were used for training, validation and testing respectively. These were
split by patient, not ventilation episode, to avoid data leakage from the train set. The
cohort summary is shown in Table 5.1.

Table 5.1: Cohort summary for the Amsterdam UMC database. ‘Remaining LoS’ refers to the
remaining duration in the hospital after the start of the ventilation episode.

Number of ventilation episodes 14,836
Train 10,395
Validation 2,230
Test 2,208

Sex (% male) 66.6%
Total LoS in days (mean) 8.26
Total LoS in days (median) 2.13
Remaining LoS in days (mean) 7.26
Remaining LoS in days (median) 2.01
VD in days (mean) 3.95
VD in days (median) 0.83
In-hospital mortality 14.6%
Tracheostomy patients 7.4%
‘Urgent’ patients 28.1%

Number of input features 45
Time series 31
Static 14
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5.5.2 Static Features

I extracted 14 static features from the admissions table (Table 5.2). As in Section 3.5.3.1,
discrete and continuous variables were scaled to the interval [-1, 1], using the 5th and 95th
percentiles as the boundaries, and absolute cut offs were placed at [-4, 4]. Binary variables
were coded as 1 and 0. Categorical variables were converted to one-hot encodings, with
the exception of ‘agegroup’, ‘heightgroup’ and ‘weightgroup’. These appear as ordered
categories e.g. [18-39, 40-49, 50-59, 60-69, 70-79, 80+] for agegroup. I converted these
to an ordered set centred on 0, [-1, -0.6, -0.2, 0.2, 0.6, 1], to preserve the quantitative
significance of each category.

Table 5.2: Static features used in the model. ‘Null Height’ and ‘Null Weight’ were added as
indicator variables to indicate when the height or weight were missing and have been imputed
with the mean value. I added the variables ‘Admission Count’ and ‘Ventilation Episode Count’
based on previous admissions and ventilation episodes.

Feature Type Source Table

Sex Binary admissions
Age Group Discrete admissions
Height Group Discrete admissions
Weight Group Discrete admissions
Admission Count Discrete
Ventilation Episode Count Discrete
Urgency Binary admissions
Previous Ward Categorical admissions
Specific Location in ICU Categorical admissions
Physician Speciality Categorical admissions
Weight Source Categorical admissions
Height Source Categorical admissions
Null Height Binary
Null Weight Binary

5.5.3 Time Series

For each ventilation episode, I selected 31 time series variables, mostly from the nu-
mericitems table (these are shown in Table C.5 in the Appendix). I used a semi-automatic
process for feature selection. To be included, the variable had to be present in at least
25% of patient stays, and these were further narrowed down with advice from Dr Ari
Ercole. I extracted ‘diagnosissubgroups’ using a query from the AmsterdamUMCdb github
repository [115] and ventilator settings from listitems. The ventilator settings classification
is given in Table C.6 in the Appendix. I engineered the features ‘lung compliance’ and
‘P/F ratio’ because they are clinically important, and I have previously noted that neural
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networks are unreliable when performing divisions. I calculated lung compliance as:

Lung Compliance =
0.73556× Expiratory Tidal Volume
Peak Inspiratory Pressure− PEEP

(5.1)

where 0.73556 is a conversion factor to convert lung compliance to its usual unit of
ml/cmH2O. I calculated the P/F ratio as:

P/F Ratio =
PaO2

FiO2

(5.2)

where FiO2 is expressed as a fraction rather than a percentage.
The time series variables were processed in the same manner as in Section 3.5.3.3. The

decay indicators were calculated as 0.8j, where j is the time since the last recording. If
the variable is up to date, decay is 1, if it has been forward-filled it will be between 0 and
1, and if there is no previous value, decay is 0 and the variable is filled with the mean
value for the training set.

5.6 Experiments

5.6.1 Prediction Tasks

5.6.1.1 Remaining Length of Stay and Ventilation Duration

I assigned a remaining length of stay (LoS) and remaining ventilation duration (VD) target
to each hour of the ventilation episode, ending when the patient dies or is extubated. The
remaining LoS is calculated by subtracting the time elapsed in the ICU from the total
LoS. The remaining VD is calculated by subtracting the time elapsed in the ventilation
episode from the total VD. I only trained on data from the first 21 days of the ventilation
episode to protect against batches becoming overly long and slowing down training.

The remaining LoS and VD each have a significant positive skew which makes the
duration tasks more challenging. I partly circumvent this by replacing the commonly used
mean squared error (MSE) loss with mean squared log error (MSLE), as in Chapters 3
and 4.

5.6.1.2 Mortality and Tracheostomy

Unlike the duration tasks, these tasks are static, i.e. the labels do not change during the
ventilation episode. Both tasks have significant class imbalance (only 14.6% and 7.4% of
patients died or received a tracheostomy respectively). In order to encourage the model to
prioritise learning these important outcomes, I applied class weighting to the task (where
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the weight is proportional to the inverse of the frequency of each outcome). I used binary
crossentropy as the loss function for both tasks.

5.6.1.3 Reconstruction and Forecasting

As shown in Figure 5.1, I use the embedding to reconstruct the timestep t, and forecast one
timestep (t+ 1) ahead. For the reconstruction of t and forecast of t+ 1, I apply the mean
squared error since the data can (very approximately) be assumed to be Gaussian centred
at 0 following normalisation. I also reconstruct the following static features: sex, urgency
of admission, agegroup, weightgroup, and heightgroup. The first two are binary, and so I
apply the binary crossentropy loss function. The other three are ordered categorical (as
explained in Section 5.5.2), therefore I use the mean squared error loss function.

The relative weightings of all of these tasks are given in Section C.1 in the Appendix.

5.6.2 Encoder Implementation

I tested three different encoder models to generate the embeddings. They were all trained
as follows. Firstly, the time series are given to the encoder network which processes and
then combines them with the static features. These are then passed through a small
two-layer pointwise convolution to generate the embeddings (shown in green on Figure 5.1).
These are given to a predictor network, a reconstruction network and a forecasting network.

The predictor network is one layer, with four outputs, corresponding to the four
outcome tasks – tracheostomy, mortality, LoS and VD. For the binary predictions, I apply
a sigmoid activation function to generate a prediction between 0 and 1 and for the duration
predictions I apply an exponential function. This is intended to help to circumvent a
common issue seen in previous models (e.g. Harutyunyan et al. [46], as they struggle
to produce predictions over the full range of durations when the data is very skewed)
because it effectively allows the upstream network to model log(LoS) instead of LoS. The
log(LoS) distribution is much closer to a Gaussian distribution than the remaining LoS. No
activation function is placed on the outputs of the forecasting or time series reconstruction
networks, because the variables are continuous. Batch normalisation [52] and dropout
[110] is used to regularise the model. The hyperparameter search methodology is described
in Section C.1 in the Appendix.

The TPC model is implemented as described in Chapter 3. The LSTM [50] is very
similar to the one used in a recent eICU benchmark paper including LoS prediction [106].
The Transformer [121] is very similar to its original implementation except that I added
temporal masking to impose causality3 (see Section C.1 for their hyperparameters).

3The processing of each time point can only depend on current or earlier positions in the sequence.
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5.6.3 Evaluation Metrics

Binary Tasks For mortality and tracheostomy, I reported the area under the receiver
operating characteristic curve (AUROC) and the area under the precision recall curve
(AUPRC). These are explained in Section 3.6.3.2.

Duration Tasks I reported on 2 LoS and VD metrics: mean absolute deviation (MAD)
and mean squared log error (MSLE). The MAD was used as the primary metric in
Harutyunyan et al. [46] and MSLE is arguably the more holistic metric as discussed in
Section 3.6.3.1.

Reconstruction and Forecasting Tasks Since these tasks are auxiliary (we are not
interested in the performance as an outcome of the model), I reported their loss function
values (see Section 5.6.1.3) as ‘metrics’ since they do not need to be interpretable. Note
that for the forecasting task, the error can sometimes appear to be smaller than the time
series reconstruction error, but this does not mean the model is more accurate when
forecasting than reconstructing. It is because the forecasting task has one fewer timestep
to reconstruct, because the first time point can never be forecasted (and so the loss across
the time series appears to be smaller).

5.7 Results

In this section, I highlight important performance differences between the three encoders,
analyse an ablation study on the tasks, and provide a detailed analysis of the clusters
produced by the TPC model. A deeper evaluation of the results can be found in Section 5.8.

5.7.1 Task Performance

5.7.1.1 (a) – Full Task Setting

The TPC model performs significantly better than the LSTM and Transformer on the
outcome tasks (Table 5.3a), which is in line with previous findings in MIMIC-IV and
eICU presented in Chapter 3. The superiority of the TPC model is also evident in the
variational and ablation experiments. Interestingly, the Transformer performs poorly on
the binary tasks but better on the duration tasks with respect to the LSTM. Additionally,
the LSTM performs the best on the reconstruction and forecasting tasks (Table 5.4a).
Possible reasons for these findings are discussed in Section 5.8.
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Table 5.3: Encoder performance on the prediction tasks averaged over 5 independent training runs. The error margins are 95% confidence intervals.
See Section 5.6.3 for the metric definitions. For mortality and tracheostomy, higher AUROC and AUPRC is better; for LoS and VD, lower MAD
and MSLE is better. (a) shows the full multi-task setting as shown in Figure 5.1, (b) is a variational alternative to the full task setting. Statistically
significant differences are indicated by daggers († = p < 0.05, ‡ = p < 0.001). If the result is significantly better than the comparison models*, it is
highlighted in blue, if it is significantly worse it is highlighted in pink. *In (a) the statistical testing compares the three model types, in (b) each
model type is compared to its corresponding ‘non-variational’ model in table (a).

(a)

In-Hospital Mortality Tracheostomy Length of Stay Vent. Duration
Model AUROC AUPRC AUROC AUPRC MAD MSLE MAD MSLE

TPC 0.833±0.010† 0.644±0.013‡ 0.804±0.007‡ 0.507±0.020† 7.20±0.13‡ 0.359±0.010‡ 3.24±0.07‡ 0.210±0.008‡

Transformer 0.697±0.012 0.434±0.019 0.760±0.012 0.419±0.033 8.46±0.07 0.495±0.007 3.95±0.20 0.256±0.016
LSTM 0.823±0.002 0.608±0.008 0.774±0.002 0.473±0.015 9.16±0.06 0.663±0.008 5.57±0.04 0.681±0.011

(b)
TPC 0.807±0.006‡ 0.584±0.014‡ 0.775±0.008‡ 0.437±0.012‡ 9.06±0.10‡ 0.555±0.018‡ 4.42±0.03‡ 0.347±0.006‡

Transformer 0.660±0.023† 0.373±0.039† 0.714±0.020‡ 0.353±0.018† 9.42±0.27‡ 0.623±0.020‡ 4.63±0.27‡ 0.359±0.030‡

LSTM 0.803±0.004‡ 0.555±0.006‡ 0.748±0.005‡ 0.411±0.010‡ 10.2±0.1‡ 0.813±0.016‡ 5.95±0.04‡ 0.775±0.007‡

Table 5.4: Losses for the reconstruction tasks and forecasting task averaged over 5 independent training runs. The error margins are 95%
confidence intervals. See Section 5.6.1.3 for explanations of the losses shown. The meaning of (a), (b), the colour scheme and statistical tests are
defined in the legend to Table 5.3 above.

(a)

Model Reconstruction Tasks Forecasting
Last Timestep Static (Binary) Static (Other)

TPC 0.334±0.004 0.013±0.000 0.210±0.038 0.334±0.005
Transformer 0.351±0.005 0.013±0.000 0.354±0.005 0.347±0.001
LSTM 0.297±0.006‡ 0.012±0.001† 0.078±0.010‡ 0.299±0.004‡

(b)
TPC 0.345±0.002‡ 0.013±0.000 0.332±0.006‡ 0.345±0.003‡

Transformer 0.355±0.006 0.013±0.000† 0.356±0.001 0.353±0.005†

LSTM 0.322±0.003‡ 0.012±0.000 0.266±0.004‡ 0.323±0.003‡
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5.7.1.2 (b) – Variational Embedding Spaces

I experimented with making the embeddings ‘variational’, by representing the embedding
as a set of means and standard deviations to allow sampling of embedding coordinates.
The rationale was that by forcing the embedding space to be smoother, I might improve the
quality of the clustering as the distances between patients in the embedding space become
more reliable. However, this was found to universally hurt performance (Table 5.3b and
Table 5.4b) and it produced clusters which were more homogeneous in terms of outcomes
and features, which was counter to the aim of producing clinically distinct clusters.

5.7.2 Ablation Study

I performed an ablation study on the tasks used to train the representation space. The
results are shown in Table 5.5. Firstly, we see that the best results for all tasks (except
for the duration tasks) are achieved in the full multi-task setting. Not a single metric
improves in any of other ablation settings, and yet at least one metric in every ablation
setting showed a deterioration in performance (the exception in task setting (g) is discussed
below). Overall this indicates that having multiple competing learning objectives has a
stabilising effect on learning the representation.

5.7.2.1 (c) – No Forecasting

Experiment (c) included all the tasks except forecasting one timestep ahead. When we
compare experiment (c) to (a), we see that the results are mostly similar, but there is a
consistent decrease in performance, which is statistically significant at the p<0.05 level on
the tracheostomy task (AUPRC in the TPC model and AUROC in the Transformer model).
On the reconstruction task, again the performance is similar but statistically worse in the
last timestep reconstruction in the LSTM model. This means that the forecasting task is
contributing slightly to the performance in (a), but the benefit is small.

5.7.2.2 (d) – No Reconstruction

Experiment (d) removes both the timestep t reconstruction and the static data reconstruc-
tion tasks, but keeps the forecasting task. The effect size is larger than in (c), but again
is only statistically significant on the tracheostomy task. The forecasting task performs
significantly worse in the Transformer and LSTM models without the reconstruction.
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Table 5.5: Prediction task results for the task ablation study. The full task setting from Table 5.3a has been repeated for ease of comparison.
Various task ablations are compared to (a): (c) includes all tasks except for the forecasting task, (d) includes all tasks except for the reconstruction
tasks, (e) includes only the prediction tasks, (f) is only the binary tasks, and (g) is only the duration tasks. The colour scheme, metrics and
statistical test comparisons are explained in the legend to Table 5.3.

(a)

In-Hospital Mortality Tracheostomy Length of Stay Vent. Duration
Model AUROC AUPRC AUROC AUPRC MAD MSLE MAD MSLE

TPC 0.833±0.010 0.644±0.013 0.804±0.007 0.507±0.020 7.20±0.13 0.359±0.010 3.24±0.07 0.210±0.008
Transformer 0.697±0.012 0.434±0.019 0.760±0.012 0.419±0.033 8.46±0.07 0.495±0.007 3.95±0.20 0.256±0.016
LSTM 0.823±0.002 0.608±0.008 0.774±0.002 0.473±0.015 9.16±0.06 0.663±0.008 5.57±0.04 0.681±0.011

(c)
TPC 0.831±0.006 0.645±0.009 0.796±0.006 0.499±0.016† 7.24±0.12 0.360±0.005 3.26±0.07 0.210±0.004
Transformer 0.675±0.052 0.399±0.079 0.743±0.011† 0.406±0.022 8.44±0.29 0.492±0.024 3.95±0.25 0.251±0.026
LSTM 0.820±0.003 0.608±0.003 0.773±0.005 0.473±0.014 9.16±0.04 0.663±0.005 5.60±0.05 0.685±0.010

(d)
TPC 0.832±0.005 0.645±0.016 0.796±0.007 0.483±0.020† 7.28±0.09 0.362±0.007 3.29±0.06 0.213±0.002
Transformer 0.698±0.017 0.431±0.041 0.743±0.008† 0.391±0.008 8.44±0.23 0.492±0.019 3.91±0.39 0.253±0.033
LSTM 0.820±0.003 0.608±0.007 0.773±0.002 0.464±0.011 9.19±0.04 0.669±0.006 5.59±0.03 0.688±0.010

(e)
TPC 0.828±0.004 0.643±0.010 0.798±0.005 0.480±0.020† 7.38±0.20 0.367±0.020 3.24±0.07 0.212±0.012
Transformer 0.676±0.019† 0.410±0.034 0.736±0.021† 0.383±0.026 8.67±0.27 0.509±0.024 4.12±0.22 0.268±0.017
LSTM 0.819±0.005 0.604±0.013 0.773±0.002 0.475±0.008 9.20±0.04 0.669±0.008 5.61±0.04 0.691±0.012

(f)
TPC 0.823±0.006† 0.626±0.014† 0.793±0.002† 0.477±0.017† - - - -
Transformer 0.669±0.036 0.373±0.048† 0.737±0.021† 0.400±0.038 - - - -
LSTM 0.817±0.003† 0.597±0.007† 0.767±0.003‡ 0.458±0.016 - - - -

(g)
TPC - - - - 6.99±0.10† 0.341±0.007† 3.08±0.09† 0.180±0.004‡

Transformer - - - - 8.18±0.12‡ 0.472±0.012† 3.68±0.18† 0.224±0.009†

LSTM - - - - 9.05±0.05† 0.644±0.006‡ 5.55±0.01 0.668±0.003†
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Table 5.6: Reconstruction and forecasting losses for the task ablation study. The full task setting
from Table 5.4(a) has been repeated for ease of comparison. The following task ablations are
compared to (a): (c) includes all tasks except for the forecasting task, (d) includes all tasks except
for the reconstruction tasks. The colour scheme and statistical test comparisons are explained in
the legend to Table 5.3.

(a)

Model Reconstruction Tasks Forecasting
Last Timestep Static (Binary) Static (Other)

TPC 0.334±0.004 0.013±0.000 0.210±0.038 0.334±0.005
Transformer 0.351±0.005 0.013±0.000 0.354±0.005 0.347±0.001
LSTM 0.297±0.006 0.012±0.001 0.078±0.010 0.299±0.004

(c)
TPC 0.334±0.004 0.012±0.000 0.198±0.020 -
Transformer 0.349±0.007 0.013±0.000 0.358±0.007 -
LSTM 0.305±0.003† 0.011±0.000 0.085±0.010 -

(d)
TPC - - - 0.339±0.006
Transformer - - - 0.355±0.007†

LSTM - - - 0.309±0.006†

5.7.2.3 (e) – Prediction Tasks Only

Experiment (e) includes the binary and duration prediction tasks, but no reconstruction
or forecasting. The performance again deteriorates, particularly on the tracheostomy task,
we also start to see a more noticeable deterioration in the duration tasks, although this is
not yet statistically significant.

5.7.2.4 (f) – Binary Tasks Only

Experiment (f) follows the trend of worsening performance as tasks are removed. This
means that the mortality and tracheostomy tasks consistently benefit from supplementary
tasks which help to distinguish signal from noise.

5.7.2.5 (g) – Duration Tasks Only

Experiment (g) shows unexpected results; all of the models return better results when only
predicting LoS and VD. This was not what we observed in Tables 3.7, A.7 and A.8, where
the performance was either constant in the multitask setting, or it significantly improved
for the LoS task. This is discussed further in Section 5.8.

However, overall the trend is such that the more tasks that are included, the better
the average results across tasks.
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Table 5.7: Average outcomes by cluster ± 95% confidence intervals for the TPC model in the
full task setting. Each patient has been classified into a primary cluster, which is the cluster that
they spent the majority of their time in. LoS and VD are shown in days.

Cluster Patients Mortality (%) Tracheostomy (%) Length of Stay Vent. Duration

1 232 72.0±5.8 1.3±1.5 3.8±0.8 2.4±0.3
2 133 34.6±8.2 38.3±8.4 30.0±3.6 21.4±2.2
3 1,292 1.9±0.7 1.5±0.7 2.8±0.3 0.7±0.0
4 347 4.0±2.1 31.1±4.9 22.0±1.8 7.4±0.9
5 227 26.0±5.7 8.4±3.6 13.0±1.6 7.2±0.9

Table 5.8: Key features averaged by cluster ± 95% confidence intervals for the TPC model
in the full task setting. 70+ (%) is the percentage of patients who are 70 years old or more.
Sex is written as % male patients. Urgency (urg.) indicates whether the patient was flagged as
‘urgent’ at admission. Mandatory Ventilation (MV) refers to the ventilator setting and is defined
in Table C.6 in the Appendix. The peak inspiratory pressure (Peak I. P.), P/F ratio (P/F) and
PEEP are expressed in mmHg. A normal P/F ratio at sea level is ≈400-500mmHg, whereas
200-300mmHg is consistent with mild ARDS under the Berlin criteria [30]. Lung compliance
(Lung C.) is expressed in ml/cmH2O (a normal lung compliance for a mechanically ventilated
patient is 50-100ml/cmH2O).

Cluster 70+ (%) Sex (%M) Urg. (%) MV (%) Peak I. P. Lung C. P/F PEEP

1 52.2±6.5 59.7±6.3 63.4±6.3 68.3±0.8 25.3±0.2 32.7±0.5 217±2 10.09±0.07
2 54.1±8.6 65.8±8.1 39.1±8.4 43.2±0.4 23.2±0.1 36.8±0.3 220±1 9.97±0.03
3 39.8±2.7 69.7±2.5 14.9±1.9 38.6±0.6 16.1±0.1 58.8±0.7 260±1 6.78±0.03
4 25.9±4.6 68.4±4.9 41.5±5.3 22.1±0.4 17.8±0.1 57.5±0.4 237±1 8.19±0.28
5 40.1±6.4 69.6±5.9 43.2±6.5 41.8±0.5 20.3±0.1 47.1±0.4 243±1 8.83±0.38

5.7.3 Cluster Analysis

As the best performing encoder, I have focused on analysing the clusters produced by the
TPC model in the full task setting. In order to analyse the average differences between the
patients in each cluster, it was necessary to flatten the clustering into one ‘primary’ cluster
per patient. This was to prevent confusion, since patients can enter multiple clusters during
their ICU stay (sometimes only for one or two time points), and this is disproportionately
true of the long stay patients. The cluster in which each patient spent the majority of
their time in was assigned its primary cluster. If there were multiple modes, then the
mode experienced later in the sequence was chosen. The next two sections 5.7.3.1 and
5.7.3.2 characterise the behaviour of the primary clusters. Section 5.7.3.3 will then analyse
the dynamic aspects of the clustering from multiple perspectives.

5.7.3.1 Differences in Phenotype and Outcomes

Table 5.7 shows the mean outcomes for each cluster. I also analysed some key features in
the original data, to visualise differences in patient phenotype that the model identified.
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The average values of key features in patients divided by primary cluster are shown in
Table 5.8. Whilst further work is needed to understand these clusters, broadly we can say
that:

• Cluster 1 contains the sickest patients, with an average mortality of 72.0%. They
are relatively short stay patients and unsurprisingly they have the lowest rate
of tracheostomy as most do not survive or stay long enough to require complex
respiratory weaning. Table 5.8 shows they are primarily ventilated with ‘mandatory’
ventilation settings, meaning the machine is deciding the respiratory rate, and either
the tidal volume or pressure differential across the lung i.e. there is no reliance on (or
cooperation with) any respiratory effort from the patient. Furthermore, they have
the least compliant lungs with higher peak inspiratory pressure and higher PEEP.
This means that the physical properties of the lung have been damaged and it is
harder to inflate the lung. The P/F ratio is also the lowest among the clusters, which
indicates that the lung function is also impaired i.e. the patients cannot absorb as
much oxygen. This is in keeping with severe respiratory distress. We could describe
this phenotype as a ‘early, life-threatening pulmonary injury’ patient group.

• Cluster 2 also display substantial mortality and, again, from Table 5.8 it becomes
clear that these patients also represent a group with severe pulmonary dysfunction
like cluster 1. However this phenotype is characterised by very long LoS and VD,
with consequent high rates of tracheostomy: this phenotype represents patients who
are difficult to wean from mechanical ventilation with resultant long ICU stay. This
might be described as a ‘pulmonary critical illness’ phenotype.

• Cluster 3 have the best outcomes, with short LoS and low mortality. They are
extubated rather than requiring tracheostomy, because they have less pulmonary
injury. This appears to be a ‘short stay’ phenotype who require a brief period of
organ support only, perhaps after significant surgery.

• Cluster 4 have relatively low mortality but high rates of tracheostomy. Table 5.8
shows modest levels of respiratory failure and good lung compliance. Thus, whilst
these patients are difficult to wean from mechanical ventilation (like cluster 2), this
is due to factors that are not primarily related to pulmonary pathology: once they
receive a tracheostomy they are rapidly liberated from mechanical ventilation. Since
the cluster seems to associate with younger patients, this does not seem to be related
to frailty or chronic comorbidity. We could therefore describe them as a ‘general
critical illness’ phenotype.

• Cluster 5 shows a moderate to severe group of patients, who are not as acutely
unwell as cluster 1, but are still high-risk for mortality. From Table 5.8 we see that
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Figure 5.2: t-SNE plots for the embeddings produced by the TPC model in the full task setting.
To generate these plots, 1500 random samples were selected from the test set. In each plot,
a different attribute has been highlighted. For most variables, there is some form of visible
distribution over the representation space (e.g. the upper part of the representation space has
long LoS and high risk of tracheostomy), perhaps with the exception of sex. It is interesting to
note an area of long LoS and VD at the bottom of the plots (attributed to cluster 5). This will
be discussed later in Section 5.8.
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pulmonary injury is not a prominent feature so we could characterise these patients
as ‘early, life-threatening non-pulmonary injury’ patients.

Overall, the findings from Tables 5.7 and 5.8 show that there are statistically significant
and clinically meaningful differences between the clusters. These can be visualised in
Figure 5.2, which provides maps of the representation space, showing how the clusters
relate to one another as well as the distribution of outcomes and features.

5.7.3.2 Medoid Analysis

The medoids produced by the k-medoids clustering algorithm are shown in Figure 5.3
and give a description of a representative patient in each cluster. Note that each medoid
corresponds to both a patient and a specific time-point in their ventilation episode4.

• The medoid patient for cluster 1 (female, age 60-69) died 4 hours after the episode
shown without a tracheostomy. Her deterioration is predictable from multiple
parameters in the data but infection (high WBC) and pulmonary dysfunction
requiring mandatory ventilation are particularly noteworthy. Her heart rate increases
significantly towards the end of the episode. The peak inspiratory pressure and
PEEP have been set high to overcome poor lung compliance, and yet her tidal
volume remained low.

• The typical medoid patient representing cluster 2 (male, 80+ years old) received a
tracheostomy 19 days after the episode shown, and was discharged at 23 days. This
patient required late as well as early mandatory ventilation suggesting that he ran
into later pulmonary complications – mostly likely infectious since his CRP remains
high throughout the stay.

• The medoid patient in cluster 3 (female, age 60-69) was discharged from hospital
the day after her brief window of ventilation. She does not display substantial
physiological derangement.

• The patient in cluster 4 (female, age 60-69) received a tracheostomy 3 days after
the sequence shown. Her lung compliance and P/F ratio are both high compared
to clusters 1 and 2, indicating better lung function. Therefore, we can conclude
that she needed a tracheostomy for reasons other than lung injury. This is also
supported by the settings on her ventilator: low peak inspiratory pressure and PEEP
and no mandatory ventilation modes. Her end tidal CO2 levels suggest a degree
of hypoventilation or inability to breathe unaided which improves as she is slowly
weaned from mechanical ventilation.

4Not all of the ventilation episode for each medoid patient is shown in Figure 5.3 – only the time points
from the start until the medoid time.
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• Lastly, the patient in cluster 5 (female, 80+ years old) stayed for 9 further days in
hospital before being discharged. The short duration of ventilation and relatively
normal pulmonary physiology is again consistent with a non-pulmonary phenotype.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Time since ICU admission (hours)

Figure 5.3: Raw data from each of the medoids produced by the TPC model in the full
task setting (showing the start of the ventilation episode until the medoid time point). These
sequences can be considered the ‘architypal’ patient trajectory for each cluster. The data have
been standardised around the mean value for each feature. Red means the value is high (note
that depending on the variable this can be either a good or a bad sign for the patient) and blue
means low. We can see that each medoid largely follows the average pattern for the cluster shown
in Table 5.8. WBC is white blood count, CRP is C Reactive Protein, ABP is arterial blood
pressure.

5.7.3.3 Temporal Analysis

Broadly, there are two perspectives that we can use when evaluating the dynamic aspects
of this clustering.

One is the ‘Markovian’ perspective, where we can examine the transition function
between clusters. This is shown in Figure 5.4. Unsurprisingly, this reveals that the patient
is always most likely to remain in the same cluster. However the most common inter-cluster
transitions are from cluster 5 to cluster 4, and cluster 1 to cluster 5. Note that these
clusters are next to one another and share lengthy borders in Figure 5.2 as this will become
important later on. Most of the patients who transition to ‘Died’ come from cluster 1,
and most of the ‘Discharged’ patients come from cluster 3.

The other perspective is to look at the number of patients in each cluster at different time
points after admission, and observe the transitions between them (Figure 5.5). Transitions
from cluster 3 to ‘extubated’ are very common within the first day of ventilation, but then
they almost disappear by 3 days. This cannot be seen with the Markovian perspective in
Figure 5.4. Cluster 2 contains patients with the longest ventilation episodes, which can be
seen by its low rate of attrition over time.
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Figure 5.4: A cluster transition matrix for the TPC model in the full task setting, showing the
probability of entering each cluster at time t+ 1, plus the categories ‘discharged’ or ‘died’, given
their current cluster at time t.

Figure 5.5: A sankey plot showing the evolution of the clustering across time. I begin at 4
hours to allow the clustering to stabilise at the start of the time series. At 21 days there are
still some patients without a final outcome (mostly from cluster 2) but this is because they are
ventilated for longer than 21 days and have been right censored.

Number of Clusters per Patient Figure 5.6 shows us that most of the patients remain
in only one cluster during their ventilation episode. However, when the distribution is
broken down by primary cluster, we can see that this is heavily driven by the behaviour of
cluster 3 patients, which tend to remain in cluster 3 for their entire ventilation duration
(note that they tend to have short VDs so this is not so surprising). In contrast, clusters 2
and 5 most commonly appear alongside other clusters during a single ventilation episode.
This means that for most episodes attributed to cluster 2 or 5, there are transitions either
into or out of these clusters. These are explored next.

104



Figure 5.6: Distribution of the number of clusters that the patient enters during their ventilation
episode, separated by primary cluster (shown by the colour key). For example, cluster 3 (purple)
mainly appears on its own i.e. the patient starts the episode in cluster 3 and remains in cluster 3
for the whole duration. In contrast, cluster 5 (red) rarely appears on its own, most commonly
cluster 5 patients appear in 2-4 other clusters during their stay.

Figure 5.7: Percentage of patients who enter their primary cluster, by time since the start of
the ventilation episode.

Cluster Transitions The clusters produced by the TPC model are remarkably stable
over time, given that there is no explicit loss incentive to constrain the representation to
behave in this way – it is purely learned from the tasks. Figure 5.7 shows the distribution
of time points that the patients first enter their primary cluster. Clusters 2 and 3 are
particularly likely to accurately assigned during the first hour of ventilation (87% and 89%
respectively), while cluster 4 is the least likely to be identified early (64%).

Next, I looked into what I will refer to as ‘stable’ transitions between clusters. In order
to be characterised as stable, the origin cluster needed to remain stable in the 5 hours
preceding the transition, and the patient was not permitted to re-enter the origin cluster
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Table 5.9: Stable cluster transitions (origin cluster → destination cluster) with a count of >10,
sorted by destination cluster. The median rather than the mean time is displayed to show a more
representative time of transition (as there is positive skew).

Transition Count Median Time Mortality (%) Tracheostomy (%) Urgency (%) VD LoS

3→1 17 3 76.5 0.0 47.1 0.5 0.7
5→1 29 16 51.7 10.3 55.2 4.3 5.3

4→2 12 58 8.3 41.7 16.7 6.7 11.0
5→2 12 4 25.0 25.0 41.7 10.8 17.7

1→3 28 11 10.7 0.0 67.9 1.0 2.6
4→3 12 63 0.0 41.7 58.3 0.7 9.6
5→3 46 9 15.2 4.3 41.3 1.2 6.5

2→4 28 17 10.7 21.4 42.9 6.2 12.8
5→4 27 10 11.1 7.4 48.1 3.4 9.1

1→5 25 3 44.0 4.0 68.0 3.9 6.5
2→5 14 23 28.6 14.3 50.0 6.1 8.7
3→5 15 4 13.3 13.3 53.3 1.9 4.6
4→5 15 56 26.7 26.7 46.7 6.6 11.5

within the first 5 hours following the transition. This was primarily to screen out patients
who were at the boundary between two clusters, continually crossing back and forth but
not representing a true transition from one cluster to the other. Before screening, there
were 22,036 cluster transitions, corresponding to 870 separate ventilation episodes (39%
of the total in the test set). Of these transitions, only 291 represented stable movement
between clusters. I further removed any transitions between two clusters that had fewer
than 10 transition examples, as this would be insufficient to analyse. The remaining 280
transitions are shown in Table 5.9.

Firstly, it is noteworthy that the outcomes reflect the destination cluster, not the origin
cluster. The exception to this is the ‘urgency’ column, which is not an outcome, but a
label assigned at admission and hence is more likely to reflect the origin cluster (although
it is worth mentioning that the origin cluster is not necessarily the cluster at admission).

Cluster 5 stands out as being disproportionately involved in inter-cluster transitions
(114 movements into the cluster and 69 movements out, making 65% of the total number
of stable transitions). Of these, the most common is 5→3, which occurs when the model
overestimates the risk to the patient early on in the ventilation episode. Not shown in
Figure 5.9, is that the average predicted risk of death drops from 56.4% 5 hours prior
to the transition, to 41.7% at the point of transition. There is also a corresponding
reduction in tracheostomy risk (-13%), LoS (-17.1% after adjustment5) and VD (-26.4%
after adjustment) as predicted by the model, and dramatic improvements in physiological
parameters such as lung compliance (+35%) and P/F ratio (+15%).

5There is a 5 hour gap between these predictions, therefore this time difference needs to be removed
from the first prediction.
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Another interesting transition is 3→1, which happens when the model initially believes
the patient to be relatively healthy, but then quickly re-adjusts to predict poor outcomes.
Looking in more detail at the raw data, I discovered that these patients are younger
(only 23.5% are 70+), which could explain why the model was initially optimistic and
why the deterioration is so rapid6. I also observed a deterioration in the lung compliance
(-26.3%) and P/F ratios (-12.8%), and a change in the ventilator settings – namely higher
PEEP and peak inspiratory pressure and lower tidal volumes – reflecting a drop in lung
compliance of the patients. Most of these patients died within 12 hours of the transition
to cluster 1.

5.7.3.4 Reliability

In this section, I aimed to investigate how reproducible these phenotypes were. I chose to
analyse the clusters produced by: i) alternative encoder models, ii) retraining the TPC
model with different random seeds and iii) varying the value of k.

Choice of Encoder Figure 5.8 compares the cluster assignments using different encoder
models. It is encouraging that there is a strong cohesion between some of the clusters,
meaning that the models are picking out genuine and consistent patterns in the data.

Figure 5.8: A comparison of the cluster assignments produced by different encoders in the full
task setting. We can see that there is strong cohesion between some of the clusters. For example,
cluster 3 appears to be the same in all three models.

If we examine the TPC/LSTM comparison (far left in Figure 5.8) we can see that
clusters 2, 3 and 4 in the TPC correspond to 5, 3 and 1 respectively in the LSTM. In
addition, clusters 1 and 5 (TPC) imperfectly map to 2 and 4 (LSTM) – the main difference
being that some additional patients in cluster 5 in the TPC map to cluster 2 in the LSTM.
This means that the k-medoids algorithm has placed a different boundary between these
groups in the clustering process. Looking back to Figure 5.2, clusters 1 and 5 are revealed
to be neighbours – in fact, cluster 5 appears to envelope cluster 1, suggesting that 1 is a

6This is because younger patients can mask a problem by compensating deceptively well, until they
reach a point where the homeostatic mechanisms can no longer cope.
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sub-cluster of 5. This is also consistent with the clinical picture shown in Table 5.7, where
the main difference is that cluster 1 appear to have acute pulmonary dysfunction, most
likely in addition to other organ failures. Therefore, the explanation for this discrepancy
is that the LSTM has a more generous threshold than the TPC for inclusion in its highest
risk ‘early, life-threatening pulmonary injury’ category (cluster 2).

In the TPC/Transformer comparison, the clusters largely correlate, except that cluster
5 patients in the TPC have been placed into cluster 4 in the Transformer. Further
investigation revealed these to be patients with increased risk of receiving a tracheostomy
(i.e. the patients which lay closest to the decision boundary between the clusters).

The LSTM/Transformer comparison mirrors some of the correlations in TPC/LSTM
but the mapping is less precise. This could be because the models do not perform as well,
making the representations less reliable. It could also be because the models have different
affinities for the various tasks, creating divergent biases in the representation space.

It is worth noting that in all three models, cluster 3 is the most distinct. This is
unsurprising because it corresponds to patients whose physiology is closest to ‘normal’.
Therefore this group is the most homogeneous and can always be identified easily.

Retraining TPC I retrained the TPC model 5 times with different initialisation gen-
erated by different random seeds and compared the resulting clusters to the original
(Figure 5.9). Overall, there is strong cohesion between the models, but sometimes there are
shifts in the boundaries between neighbouring clusters in Figure 5.2. Especially between
cluster 5 (moderate-severe) and cluster 1 (severe), where some models (TPC 2, TPC 3,
TPC 4) allow patients in cluster 5 to enter their ‘cluster 1’ equivalent. Nevertheless, very
distinct phenotypes are almost never mixed e.g. clusters 2 and 3, 1 and 4, or 1 and 3 (as
defined by the TPC 1 model). As in the encoder comparisons, cluster 3 is always well
characterised.

Figure 5.9: A comparison of the cluster assignments produced by TPC models which have been
trained with different random seeds.

Number of Clusters The value of k was determined using the elbow method (see
Section C.1.1 in the Appendix). In Figure 5.10, I show how the clusters would appear
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Figure 5.10: Cluster labels with increasing number of clusters (from k=2 to k=7).

with increasing value of k. What is most striking is that each time a cluster is added, the
new cluster either inserts itself within an existing cluster, or it appears at the intersection
between existing clusters. For example, as we move from 2 to 3 clusters, the new cluster 3
is almost completely contained within the old cluster 1. This pattern of sub-dividing an
existing cluster generally continues until we reach 6 and 7 clusters, when the new cluster
inserts itself at the boundary between two or more old clusters. In other words, increasing
the value of k does not completely shift the position of all of the clusters, but rather it
carefully subdivides them. The importance of this behaviour with increasing value of k is
discussed in the next section.

5.8 Discussion

In this chapter, I have evaluated the use of TPC model, trained using supervised, unsuper-
vised and self-supervised learning techniques, for the purposes of phenotype discovery in
mechanically ventilated patients. I will discuss the most important findings in turn.

Firstly, I reaffirmed that the TPC model performs better than alternative encoders on
EHR data for patient outcome prediction. This time on the Amsterdam UMC database
[116], and with added tasks.

Secondly, the Transformer results in Table 5.3a differ slightly from those in Chapter 3,
where the Transformer model performed marginally better than the LSTM on LoS (Ta-
ble 3.4) and mortality (Tables A.7 and A.8). In Table 5.3, the Transformer outperformed
LSTM on LoS and VD, but performed much worse on the mortality task, and slightly
worse on the tracheostomy task. This may be because the task weighting – which was fixed
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between encoder models – was more favourouble to the LSTM and TPC models, whereas
the Transformer would have benefited from greater weighting towards the binary tasks.
Another possibility is that the binary tasks benefit from biases in the LSTM and TPC
encoders, because these models naturally emphasise recent time points over distant ones
(and recent time points are more important for solving the binary tasks). The Transformer
model has a weaker sense of temporal structure, and hence would have to learn this from
first principles. As for the reason that the Transformer performs relatively better on
tracheostomy compared to mortality, it could be because of a positive correlation between
long LoS, VD and the chance of acquiring a tracheostomy. Solving the duration tasks
makes the tracheostomy task easier, whereas the relation to mortality is more complex e.g.
both the healthiest patients (cluster 3) and sickest patients (cluster 1) both have relatively
short LoS, VD and low chance of getting a tracheostomy, but have very different mortality
risks. This can be visualised in Figure 5.2.

To briefly comment on the reconstruction results; initially it may seem surprising that
the LSTM model performs best on the reconstruction and forecasting tasks. However, this
could be explained if the LSTM creates a slightly simpler, ‘lower level’ representation that
is easier to translate back to the original data using the two-layer fully connected decoder
networks. Further work would be required to prove this.

Thirdly, Table 5.5 reveals a general trend that the more tasks that are added, the
better results across all the tasks, with particular benefits to the tracheostomy task. The
exception to this was the duration only setting (g), which achieved the stronger results for
the LoS and VD tasks. Again, this was not the pattern in Chapter 3, where I found that
mulitask settings benefited both mortality and LoS performance (Tables A.7 and A.8).
There are two possible explanations for the discrepancy:

1. The task weighting applied to the duration task was not sufficient.

2. The tracheostomy task (but not the mortality task) reduces the performance on the
duration tasks.

The former does not seem likely, because as we already discussed, the Transformer is likely
to be under-weighting the binary tasks, and yet, it follows the same trend as the LSTM
and TPC. The latter may appear to be counter-intuitive at first, especially in light of the
correlation that exists between the duration tasks and tracheostomy procedures. However,
strong associations between tasks may not always lead to better performance. It is logical
that the greater the similarity between two tasks, the more likely that one task will interfere
with crucial aspects of the representation required for solving the other. This is usually an
advantage of multitask learning, because it enhances the signal:noise ratio when certain
types of noise only apply to one task. However, when there is non-uniform correlation
between tasks in the representation space, it could harm the performance. Looking closely
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at Figure 5.2, we can see that there is an area of patients near the bottom of the figure,
in cluster 5. These patients have long VD and LoS but have been separated from the
other long stay patients in clusters 2 and 4. The separation can be attributed to these
patients never receiving tracheostomies, unlike the patients in clusters 2 and 4. Therefore,
the addition of the tracheostomy task forces the representation space to separate these
groups, when they would be otherwise be aligned in a duration-only setting. Given the
simple nature of the predictor networks, this separation may harm the performance on the
duration tasks because the predictor cannot effectively map these patients to appropriately
long stay predictions. This theory could be formally tested by accompanying the duration
tasks with the mortality task only.

Finally, regarding the repeatability of the clustering, I demonstrated that there are
key aspects of the learned representations (both of different encoders and TPC instances)
that translate to core phenotypic traits that are consistently recognised. The separation
on other traits, especially when distinguishing the sickest patients from the moderately
ill, was more malleable. This suggests that perhaps there is not a well defined distinction
between these, but rather a scale of deterioration, through which an arbitrary line can be
drawn.

5.9 Summary

In this chapter, I performed temporal clustering on patient representations with the aim
of revealing clinically distinctive patient phenotypes. The purpose was to characterise and
understand the behaviour of these groups, to guide future research on more personalised
approaches to treatment in the ICU. I have made the following contributions:

1. I have reaffirmed that the TPC model outperforms alternative encoders on patient
outcome prediction tasks, and can also be used for temporal clustering.

2. I have employed various visualisation techniques to show that the clusters do represent
clinically interpretable clusters with meaningful differences in outcome, trajectory
and phenotype.

3. Key features of the discovered phenotypes are stable across choices of encoder and k
(the number of clusters).

4. The cluster assignment is remarkably stable over time, and membership is determined
very early into admission. This is particularly encouraging as a substrate for future
intervention studies that would rely identifying the phenotype of the patient early
on.
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5. I found that true cluster transitions do occur in a minority of patients, where the
prognosis suddenly changes in light of an unexpected event. Studying these stable
transitions in more detail with a view towards understanding the possible causes is
an important avenue for future work.

Further work is required to be confident on the number of clusters and method for clustering
and what factors lead to cluster transitions in these (relatively rare) instances.
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CHAPTER 6

Conclusion and Future Directions

This dissertation has focused on exploiting clinical knowledge and clinical decision processes
to augment the representation of the patient. I have explored medical time series and
sparse data for patient outcome prediction and even the representation space itself for the
purposes of clustering. I have addressed the subjects posed by my research questions in
Section 1.3. However there is still much to be learned about representation learning for
the patient, both in the ICU and beyond. In this Chapter, I will discuss the avenues for
future work in the field, starting with my own work. Then, I will address the broader
implications for AI in medicine, for the researcher, the clinician, and for the delivery of
healthcare as a whole.

6.1 Limitations and Future Work

In Chapter 3, I proposed a new model for medical time series - the TPC model. However,
there remain several avenues in which to build on the work. Firstly, we know that LoS is
heavily influenced by operational factors such as staff working hours, and clinical practices
can change over time [56]. Capacity to maintain performance over time is an important
consideration before a system could be used in practice. In future work, it would be
instructive to test how quickly the models become out-of-date by reserving more recent
data as a test set [75]. Although I have included a large set of baselines, I acknowledge that
a more exhaustive comparison could be performed, for example comparing with Gaussian
Processes [85] or ODE-RNNs [21, 97] for handling irregularly sampled time-series. It
also remains unclear why the TPC model gains more from the multitask setting than
the other models. It seems likely that it is related to additional regularisation provided
by the mortality task, but further investigation is needed to confirm my speculations.
Finally, although I have motivated my study with bed management, this work describes a
methodological proof of concept and does not constitute a real clinical system. Prospective
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study and integration into a real-world EHR is necessary to demonstrate real-world benefit,
both of which pose their own challenges [87, 104].

In Chapter 4, I outlined a method to leverage data from patients with similarities in
their diagnoses. A natural extension to the work would be to include shared medications
and procedures in the similarity scores. I could also characterise the sensitivity of LSTM-
GNN to parameters α, c and k. Nevertheless, our results thus far show that a graph
representation of sparse EHR data is a potentially rewarding avenue for future research.

In Chapter 5, I performed temporal clustering on patient representations with the
aim of revealing clinically distinctive phenotypes. There are many ways in which to expand
on this work. Firstly, it is evident from the results that some clusters are more related
than others. A tree based hierarchy of clusters seems more natural than a flat structure.
It would be interesting to visualise the shifts in cluster assignment within this tree. I am
particularly interested in modifying an approach currently used in genetics [11, 17, 81] in
order to apply it to the ICU.

Secondly, it is obvious from Table 5.3 that the study is slightly under-powered, since
there are only a few statistically significant results. Further experiments would be needed
to ensure that these show significant differences between the tasks.

Although I found the resulting clusters to be stable across time and encoder type,
I am interested in investigating the use of contrastive learning to further regularise the
embedding space e.g. Yèche et al. [131]. Specifically, contrastive learning could be used to
explicitly enforce the relative positioning of the embeddings, reducing the potential for
unexpected behaviour. While the simple predictor and decoder networks I used in this
study may have contributed to the observed stability, I believe that contrastive learning
could provide additional benefits and I look forward to exploring this direction in future
research.

Regarding generalisability, I have already shown that the results with different encoders
are comparable, but repeating the work on another data set, such as MIMIC-IV or eICU
would strengthen this assessment. Nevertheless, the work serves as a promising sign that
it is possible to perform stable, early phenotyping in the heterogeneous ICU environment.
Intervention studies would be required to demonstrate that the findings are actionable.

Although all of my methods were designed with the ICU time series in mind, the
insights and modelling advantages extend to wider applications. Many other types of
time series data exhibit autocorrelation, seasonality, and trends that could be exploited
by the TPC model. The mean-squared logarithmic error (MSLE) is often underutilised
in situations of extreme positive skew in labels. Similarly, a temporal encoder could
be effectively enriched using a GNN whenever the data can be augmented with similar
examples in the data.
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6.2 Representation Learning Beyond the ICU

I will now broaden my perspective to consider the wider challenges of representation
learning for patients outside the ICU, and into the future.

At present, data is arguably the most obvious constraint. This is because we do not
always have the luxury of rich numerical data sets such as those available in the ICU.
Currently, the main types of available data for prediction are demographics, diagnoses,
medications, procedures, self-reported questionnaires and text from clinical encounters.
There is significant potential for this to expand in the future, for example using self-reported
data from patients, fitness trackers, GPS location and social media activity. However, at
the moment we are mostly limited by the size and quality of data sets in health.

Another broad problem relates to the generalisability of the models. Empirically we
know that a model trained on one set of training data can make catastrophic errors on a
different data set, even if it is very similar to the first. As it is not practical to train a
new model for every scenario, we need further work in this area. The performance of deep
learning models is influenced by several stochastic processes during training, for example
the order in which the training data is presented. This means that it is impossible to get
solid guarantees for performance. In cases where the problems are heavily deterministic, it
can be more reliable to simulate the system rather than use deep learning.

Finally, we need to consider the common scenario in medicine where the required task
does not have an outcome that can be mathematically defined, for example, “deliver CBT”.
It is more difficult to objectively measure whether the agent has performed correctly.
For these tasks, we need a human in the loop to reinforce good behaviour and penalise
unsuccessful behaviour. This slows down the learning process and is difficult to implement
in practice.

In summary, there is great potential for AI-assisted technologies to enhance diagnosis,
monitoring and treatment in healthcare. Even within the narrow scope of this dissertation,
I have shown that it is possible to predict patient outcomes and make steps towards
personalising treatment with deep learning. The vast potential has only just begun to be
explored and realised. However, we must approach these technologies from a systematic
research perspective and create a framework to assess the risk of any unintended negative
consequences of their implementation. Now is the time to invest in AI research so that
we can uncover new cost-effective and ethical strategies to reduce the burdens associated
with ill-health around the world.
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6.3 How Will AI Change the Delivery of Healthcare?

Finally, I will address the impact on clinical practice and the healthcare system as a whole.
Artificial intelligence holds several promises when applied to health. The first is that it
will personalise healthcare, recommending bespoke treatments to promote better outcomes
for patients. Another is that it will make clinical workflows more efficient by automating
processes previously requiring a human in the loop. This will in theory reduce costs and
burden on healthcare staff (however this is assuming no new treatments will arise to
squeeze the gap opened up by AI). Another hope is that it will improve patient safety
and reduce medical errors, much like self driving cars are expected to reduce mortality
from road traffic accidents. It also has the potential to make healthcare allocation more
fair, provided further research can help to distance the treatment recommendations from
human biases and healthcare inequalities in the data required to train them.

The routine collection of new data modalities is likely to increase, and may extend to
the home of the patient in the form of wearables and even implantables. Note that we
need to be wary of exacerbating healthcare inequalities. For example, arrhythmia alerts
on smart watches currently have low specificity, and we should be careful that this does
not distract attention and resources away from people who cannot afford smart devices
but have greater health needs. Population based risk scoring tools will be replaced with
more accurate and personalised risk prediction models. All of these could lead to a greater
focus on promoting wellness and the primary prevention of disease, rather than the current
model of treating problems after the patient has already developed symptoms.

I also believe that the responsibilities of the doctor will shift over time. AI will
increasingly preside over the data interpretation requirements, leaving the doctor in a
more supervisory role. For example, we could envisage AI running semi-autonomously
over screening programmes or routine test results. However, if the model is uncertain, or
if the output is critically important for the patient, or if the output does not align with
the clinical signs and symptoms, a doctor will always be able to double check the result.

There are aspects of clinical practice where AI cannot perform as well as humans, at
least for the foreseeable future. For example, providing advice to patients in light of their
personal wishes and circumstances, making difficult ethical decisions, or coordinating the
implementation of care plans for patients. Professionalism and good communication skills
will continue to be highly important in order to gain trust and gather information from
the patient, as will the ability to explain treatment options in a way that the patient
can understand. The doctor will remain an expert in medicine and will be ultimately
responsible for clinical decision making, but the need to interpret raw data modalities
e.g. the ECG (and much more complex data formats) from first principles may become
redundant, except for in specialist circumstances.
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6.3.1 Preparing the Next Generation of Doctors

This next section contains some of my personal opinions on medical education, and in
particular the need to prepare young doctors for the upcoming changes highlighted in the
previous section.

As discussed, AI will filter into clinical workflows over the next decade or two, and as
doctors we will be expected to use these systems to assist in our decision making while
keeping our patients safe. We will need to be sufficiently educated in AI technology, both
to competently use, but also to critically appraise the software e.g. knowing when it can
and cannot be trusted. Overlooking this need for competent physician-machine interaction
may quickly become the biggest hindrance to unlocking the benefits of AI, rather than the
technical limitations already discussed. This is because historically, technology has moved
much faster than clinical workflows.

There has been little interest in plans to integrate AI teaching into any part of the
standard medical education pathway. This is despite the current levels of AI awareness
among physicians being very low [42].

What is the Best Way Forward? I believe that there are two fundamental competency
levels that we require within the medical workforce. The first is a minimum standard of
knowledge that every doctor should have. For example, this could include:

• Critical appraisal of AI systems; including a basic awareness of their strengths and
weaknesses.

• Data and model privacy; security vulnerabilities of AI models.

• AI-specific ethics teaching; including the ability to recognise bias in AI and understand
why it arises.

Next, we need to foster clinicians with a special interest in AI, who are able to
collaborate directly with researchers to guide efforts towards clinically impactful problems,
and facilitate the implementation of that research. Currently, we have a very small
community of these. This is because the barrier to entry is exceedingly high; the doctor or
medical student must spend their spare time to gain the required knowledge and skills.
This is usually an inefficient process because most do not know where to start, they have
no mentor to guide them, and online resources are not designed for their background.
Most who are successful have been lucky enough to encounter a fruitful collaboration
or dedicated mentor early on. We need an established, integrated pathway for these AI-
interested clinicians with bespoke training, to decrease the barrier to entry and streamline
clinician-led progress in AI as a result.
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APPENDIX A

Temporal Pointwise Convolution

A.1 Hyperparameter Search Methodology and

Implementation Details

The TPC and baseline models have hyperparameters that can broadly be split into three
categories: time series specific, non-time series specific and global parameters (shown in
more detail in Tables A.1, A.2 and A.3). The hyperparameter search ranges have been
included in Table A.4.

First, I ran 25 randomly sampled hyperparameter trials on the TPC model to decide
the non-time series specific parameters (diagnosis embedding size, final fully connected
layer size, batch normalisation strategy, dropout rate and the parameter α) keeping all
other parameters fixed. These parameters (indicated by stars) remained fixed for all the
models which share their non-time series specific architecture (NB. the best value for α
was 100 – not shown in the Tables).

I then ran 50 hyperparameter trials to optimise the remaining parameters for the
TPC, standard LSTM, and Transformer models. To train the channel-wise LSTM and the
temporal model with weight sharing, I ran a further 10 trials to re-optimise the hidden size
(8 per feature) and number of temporal channels (32 channels shared across all features)
respectively. For all other ablation studies and variations of each model, I kept the same
hyperparameters where applicable (see Table 3.4 for a full list of all of the models). The
number of epochs was determined by selecting the best validation performance from a
model trained over 50 epochs. This was different for each model. For eICU this was 8
(LSTM), 30 (CW LSTM), 15 (Transformer) and 15 (TPC). For MIMIC-IV this was 8
(LSTM), 20 (CW LSTM), 15 (Transformer) and 10 (TPC). I noted that the best LSTM
hyperparameters (Table A.2) were similar to that found in Sheikhalishahi et al. [106].

All deep learning methods were implemented in PyTorch [80] and were optimised using
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Table A.1: The TPC model has 11 hyperparameters (Main Dropout and Batch Normalisation
have been repeated in the table because they apply to multiple parts of the model). I allowed
the model to optimise a custom dropout rate for the temporal convolutions because they have
fewer parameters and might need less regularisation than the rest of the model. The best
hyperparameter values are shown in brackets (eICU/MIMIC-IV). Hyperparameters marked with
* were fixed across all of the models.

TPC Specific
Temporal Specific Pointwise Specific

Temp. Channels (12/11) Point. Channels (13/5)
Temp. Dropout (0.05/0.05) Main Dropout* (0.45/0)
Kernel Size (4/5)

Batch Normalisation* (True/True)
No. TPC Layers (9/8)

Non-TPC Specific Global Parameters

Diag. Embedding Size* (64/-) Batch Size (32/8)
Main Dropout* (0.45/0) Learning Rate (0.00226/
Final FC Layer Size* (17/36) 0.00221)
Batch Normalisation* (True/True)

Table A.2: The LSTM model has 9 hyperparameters. I allowed the model to optimise a custom
dropout rate for the LSTM layers. Note that batch normalisation is not applicable to the LSTM
layers. The best parameters are shown as (eICU/MIMIC-IV).

LSTM Specific Non-LSTM Specific

Hidden State (128/128) Diag. Embedding Size* (64/-)
LSTM Dropout (0.2/0.25) Main Dropout* (0.45/0)
No. LSTM Layers (2/1) Final FC Layer Size* (17/36)

Batch Normalisation* (True/True)

Global Parameters

Batch Size (512/32)
Learning Rate (0.00129/0.00163)
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Adam [57]. The data (including decay indicators) and the non-time series components of
the models were the same as in TPC (Figure 3.5). I used trixi to structure our experiments
and compare different hyperparameter choices [135].

The experiments were performed using resources provided by the Cambridge Tier-2
system operated by the University of Cambridge Research Computing Service (www.hpc.
cam.ac.uk) funded by EPSRC Tier-2 capital grant EP/P020259/1.

A.1.1 Transformer

The Transformer is a self-attention model, originally designed for sequence-to-sequence
tasks in natural language processing (more detail in provided in Section 2.5.1). It consists
of both an encoder and decoder, however I only used the former. Our implementation
is the same as the original encoder in Vaswani et al. [121], except that I added temporal
masking to impose causality i.e. the current representation can only depend on current or
earlier time points, and I omitted the positional encodings because they were not found to
be helpful. This is probably because I already had a feature to indicate the position in the
time series (Section 3.5.3.3).

Table A.3: The Transformer model has 12 hyperparameters. I allowed the model to optimise
a custom dropout rate for the Transformer layers. The positional encoding hyperparameter is
binary; it determines whether or not I used the original positional encodings proposed by Vaswani
et al. [121]. Note that batch normalisation is not applicable to the Transformer layers (the default
implementation uses layer normalisation). The best parameters are shown as (eICU/MIMIC-IV).

Transformer Specific Non-Transformer Specific

No. Attention Heads (2/1) Diag. Embedding Size* (64/-)
Feedforward Size (256/64) Main Dropout* (0.45/0)
dmodel (16/32) Final FC Layer Size* (17/36)
Transformer Dropout (0/0.05) /True)
No. Transformer Layers (6/2)

Global Parameters

Batch Size (32/64)
Learning Rate (0.00017/0.00129)
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Table A.4: Hyperparameter Search Ranges. I took a random sample from each range and
converted to an integer if necessary. For the kernel sizes (not shown in the table) the range was
dependent on the number of TPC layers selected (because large kernel sizes combined with a
large number of layers can have an inappropriately wide range as the dilation factor increases per
layer). In general the range of kernel sizes was around 2-5 (but it could be up to 10 for small
numbers of TPC Layers).

Hyperparameter Lower Upper Scale

Batch Size 4 512 log2
Dropout Rate (all) 0 0.5 Linear
Learning Rate 0.0001 0.01 log10
Batch Normalisation True False
Positional Encoding True False
Diagnosis Embedding Size 16 64 log2
Final FC Layer Size 16 64 log2
CW LSTM Hidden State Size 4 16 log2
Point. Channels 4 16 log2
Temp. Channels 4 16 log2
Temp. Channels (weight sharing) 16 64 log2
LSTM Hidden State Size 16 256 log2
dmodel 16 256 log2
Feedforward Size 16 256 log2
No. Attention Heads 2 16 log2
No. TPC Layers 1 12 Linear
No. LSTM Layers 1 4 Linear
No. Transformer Layers 1 10 Linear
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A.2 Additional Results and Figures

Table A.5: The effect of changing the size of the training data on the LSTM, CW LSTM,
Transformer, and TPC model performance in the eICU data set. A hundred percent of the
training set represents 102,712 ICU stays, 50% is 51,356, 25% is 25,678, 12.5% is 12,839, and
6.25% is 6,420 stays.

Model (% train
data)

MAD MAPE MSE MSLE R2 Kappa

LSTM (100) 2.39±0.00 118.2±1.1 26.9±0.1 1.47±0.01 0.09±0.00 0.28±0.00
LSTM (50) 2.41±0.01 129.9±1.9 26.2±0.2 1.52±0.00 0.11±0.01 0.31±0.01
LSTM (25) 2.44±0.01 126.8±2.5 27.2±0.3 1.58±0.00 0.08±0.01 0.27±0.01
LSTM (12.5) 2.48±0.01 137.4±3.4 27.4±0.2 1.65±0.01 0.07±0.01 0.27±0.01
LSTM (6.25) 2.52±0.02 135.9±3.3 28.0±0.8 1.71±0.02 0.05±0.03 0.26±0.03
CW LSTM (100) 2.37±0.00 114.5±0.4 26.6±0.1 1.43±0.00 0.10±0.00 0.30±0.00
CW LSTM (50) 2.40±0.01 123.4±0.7 26.5±0.1 1.48±0.01 0.10±0.00 0.31±0.00
CW LSTM (25) 2.44±0.00 119.8±1.3 27.2±0.1 1.54±0.00 0.08±0.00 0.29±0.00
CW LSTM (12.5) 2.50±0.01 134.7±1.5 27.7±0.1 1.63±0.01 0.06±0.00 0.28±0.00
CW LSTM (6.25) 2.58±0.01 129.8±3.5 29.0±0.2 1.73±0.01 0.02±0.01 0.25±0.01
Transformer (100) 2.36±0.00 114.1±0.6 26.7±0.1 1.43±0.00 0.09±0.00 0.30±0.00
Transformer (50) 2.39±0.00 120.1±0.6 26.5±0.1 1.48±0.00 0.10±0.00 0.31±0.00
Transformer (25) 2.43±0.01 117.9±1.8 27.2±0.2 1.54±0.01 0.08±0.01 0.28±0.01
Transformer (12.5) 2.48±0.01 128.1±2.3 27.9±0.1 1.62±0.01 0.06±0.00 0.26±0.01
Transformer (6.25) 2.52±0.01 139.7±2.4 27.8±0.1 1.69±0.02 0.06±0.00 0.26±0.00
TPC (100) 1.78±0.02 63.5±4.3 21.7±0.5 0.70±0.03 0.27±0.02 0.58±0.01
TPC (50) 1.95±0.02 72.0±3.1 23.8±0.4 0.87±0.03 0.19±0.01 0.51±0.01
TPC (25) 2.09±0.01 89.0±3.8 24.8±0.3 1.09±0.02 0.16±0.01 0.45±0.01
TPC (12.5) 2.28±0.01 101.4±4.8 27.0±0.4 1.36±0.03 0.08±0.01 0.35±0.02
TPC (6.25) 2.49±0.02 139.9±5.5 28.0±0.3 1.64±0.03 0.05±0.01 0.28±0.01
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Table A.6: The effect of training with the mean squared logarithmic error (MSLE) loss function
when compared to mean squared error (MSE) on the eICU data set. This is an extension to
Table 3.5 (refer to its legend for definitions of the metric acronyms, detailed of CI calculations
and meaning of the colour scheme).

Model MAD MAPE MSE MSLE R2 Kappa

LSTM (MSE) 2.57±0.03 235.2±6.2 24.5±0.2∗∗1.97±0.02 0.17±0.01∗∗0.28±0.01
LSTM (MSLE) 2.39±0.00∗∗118.2±1.1∗∗26.9±0.1 1.47±0.01∗∗0.09±0.00 0.28±0.00

CW LSTM (MSE) 2.56±0.01 218.5±4.0 24.2±0.1∗∗1.84±0.02 0.18±0.00∗∗0.34±0.01∗∗

CW LSTM (MSLE) 2.37±0.00∗∗114.5±0.4∗∗26.6±0.1 1.43±0.00∗∗0.10±0.00 0.30±0.00
Transformer (MSE) 2.51±0.01 212.7±5.2 24.7±0.2∗∗1.87±0.03 0.16±0.01∗∗0.28±0.01
Transformer (MSLE) 2.36±0.00∗∗114.1±0.6∗∗26.7±0.1 1.43±0.00∗∗0.09±0.00 0.30±0.00∗∗

TPC (MSE) 2.21±0.02 154.3±10.1 21.6±0.2 1.80±0.10 0.27±0.01 0.47±0.01
TPC (MSLE) 1.78±0.02∗∗63.5±4.3∗∗ 21.7±0.5 0.70±0.03∗∗0.27±0.02 0.58±0.01∗∗

Table A.7: eICU multitask results. I compared the performance of each model on individual
tasks (LoS or mortality prediction) to the multitask setting (both LoS and mortality). The results
from Table 3.4 are repeated here for ease of comparison. Note that the ‘mean’ and ‘median’
models are only for LoS – there is no equivalent model for mortality prediction.

In-Hospital Mortality Length of Stay
Model AUROC AUPRC MAD MAPE MSE MSLE R2 Kappa

Mean – – 3.21 395.7 29.5 2.87 0.00 0.00
Median – – 2.76 184.4 32.6 2.15 -0.11 0.00

LSTM
0.849±0.002 0.407±0.012 – – – - - -
– – 2.39±0.00 118.2±1.1 26.9±0.1∗ 1.47±0.01 0.09±0.00∗ 0.28±0.00
0.852±0.003 0.436±0.007∗∗ 2.40±0.01 116.5±0.8∗27.2±0.2 1.47±0.01 0.08±0.01 0.28±0.01

CW LSTM
0.855±0.001 0.464±0.004 – – – – – –
– – 2.37±0.00 114.5±0.4 26.6±0.1∗ 1.43±0.00∗ 0.10±0.00∗ 0.30±0.00
0.865±0.002∗∗0.490±0.007∗∗ 2.37±0.00 115.0±0.7 26.8±0.1 1.44±0.00 0.09±0.00 0.30±0.00

Transformer
0.851±0.002 0.454±0.005 – – – – – –
– – 2.36±0.00 114.1±0.6 26.7±0.1 1.43±0.00 0.09±0.00 0.30±0.00
0.858±0.001∗∗0.475±0.004∗∗ 2.36±0.00 114.2±0.7 26.6±0.1 1.43±0.00 0.10±0.00 0.30±0.00

TPC
0.864±0.001 0.508±0.005 – – – – – –
– – 1.78±0.02 63.5±3.8 21.8±0.5 0.71±0.03 0.26±0.02 0.58±0.01
0.865±0.002 0.523±0.006∗∗ 1.55±0.01∗∗46.4±2.6∗∗18.7±0.2∗∗0.40±0.02∗∗0.37±0.01∗∗0.70±0.00∗∗
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Table A.8: MIMIC-IV multitask results.

In-Hospital Mortality Length of Stay
Model AUROC AUPRC MAD MAPE MSE MSLE R2 Kappa

Mean – – 5.24 474.9 77.7 2.80 0.00 0.00
Median – – 4.60 216.8 86.8 2.09 -0.12 0.00

LSTM
0.895±0.001 0.657±0.003 – – – – – –
– – 3.68±0.02 107.2±3.1 65.7±0.7 1.26±0.01 0.15±0.01 0.43±0.01
0.896±0.002 0.659±0.004 3.66±0.01 106.8±2.7 65.3±0.6 1.25±0.01∗ 0.16±0.01 0.44±0.00

CW LSTM
0.897±0.002 0.650±0.005 – – – – – –
– – 3.68±0.02 107.0±1.8 66.4±0.6 1.23±0.01 0.15±0.01 0.43±0.00
0.899±0.002 0.654±0.003 3.69±0.02 107.2±1.6 66.3±0.6 1.23±0.01 0.15±0.01 0.44±0.00

Transformer
0.890±0.002 0.641±0.008 – – – – – –
– – 3.62±0.02 113.8±1.8 63.4±0.5 1.21±0.01 0.18±0.01 0.45±0.00
0.898±0.001∗∗0.656±0.005∗ 3.61±0.01 112.3±2.0 63.3±0.3 1.20±0.01 0.19±0.00 0.45±0.00

TPC
0.905±0.001 0.691±0.006 – – – – – –
– – 2.39±0.03 47.6±1.4 46.3±1.3 0.39±0.02 0.40±0.02 0.78±0.01
0.918±0.002∗∗0.713±0.007∗∗ 2.28±0.07∗ 32.4±1.2∗∗42.0±1.2∗∗0.19±0.00∗∗0.46±0.02∗∗0.85±0.00∗∗
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Table A.9: eICU time series features. ‘Time in the ICU’ and ‘Time of day’ were not part of the
tables in eICU but were added later as helpful indicators to the model.

Source Table
lab respiratorycharting

-basos MPV glucose Exhaled MV
-eos O2 Sat (%) lactate Exhaled TV (patient)
-lymphs PT magnesium LPM O2
-monos PT - INR pH Mean Airway Pressure
-polys PTT paCO2 Peak Insp. Pressure
ALT (SGPT) RBC paO2 PEEP
AST (SGOT) RDW phosphate Plateau Pressure
BUN WBC x 1000 platelets x 1000 Pressure Support
Base Excess albumin potassium RR (patient)
FiO2 alkaline phos. sodium SaO2
HCO3 anion gap total bilirubin TV/kg IBW
Hct bedside glucose total protein Tidal Volume (set)
Hgb bicarbonate troponin - I Total RR
MCH calcium urinary specific gravity Vent Rate
MCHC chloride
MCV creatinine

nursecharting vitalperiodic vitalaperiodic N/A

Bedside Glucose cvp noninvasivediastolic Time in the ICU
Delirium Scale/Score heartrate noninvasivemean Time of day
Glasgow coma score respiration noninvasivesystolic
Heart Rate sao2
Invasive BP st1
Non-Invasive BP st2
O2 Admin Device st3
O2 L/% systemicdiastolic
O2 Saturation systemicmean
Pain Score/Goal systemicsystolic
Respiratory Rate temperature
Sedation Score/Goal
Temperature
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Table A.10: MIMIC-IV time series features.

Source Table
chartevents

Activity / Mobility (JH-HLM) Mean Airway Pressure Resp Alarm - High
Apnea Interval Minute Volume Resp Alarm - Low
Arterial Blood Pressure Alarm - High Minute Volume Alarm - High Respiratory Rate
Arterial Blood Pressure Alarm - Low Minute Volume Alarm - Low Respiratory Rate (Set)
Arterial Blood Pressure diastolic Non Invasive Blood Pressure diastolic Respiratory Rate (Total)
Arterial Blood Pressure mean Non Invasive Blood Pressure mean Respiratory Rate (spont)
Arterial Blood Pressure systolic Non Invasive Blood Pressure systolic Richmond-RAS Scale
Braden Score Non-Invasive Blood Pressure Alarm - High Strength L Arm
Current Dyspnea Assessment Non-Invasive Blood Pressure Alarm - Low Strength L Leg
Daily Weight O2 Flow Strength R Arm
Expiratory Ratio O2 Saturation Pulseoxymetry Alarm - Low Strength R Leg
Fspn High O2 saturation pulseoxymetry Temperature Fahrenheit
GCS - Eye Opening PEEP set Tidal Volume (observed)
GCS - Motor Response PSV Level Tidal Volume (set)
GCS - Verbal Response Pain Level Tidal Volume (spont)
Glucose finger stick (range 70-100) Pain Level Response Total PEEP Level
Heart Rate Paw High Ventilator Mode
Heart Rate Alarm - Low Peak Insp. Pressure Vti High
Heart rate Alarm - High Phosphorous
Inspired O2 Fraction Plateau Pressure

labevents N/A

Alanine Aminotransferase (ALT) MCHC Time in the ICU
Alkaline Phosphatase MCV Time of day
Anion Gap Magnesium
Asparate Aminotransferase (AST) Oxygen Saturation
Base Excess PT
Bicarbonate PTT
Bilirubin, Total Phosphate
Calcium, Total Platelet Count
Calculated Total CO2 Potassium
Chloride Potassium, Whole Blood
Creatinine RDW
Free Calcium RDW-SD
Glucose Red Blood Cells
H Sodium
Hematocrit Sodium, Whole Blood
Hematocrit, Calculated Temperature
Hemoglobin Urea Nitrogen
I White Blood Cells
INR(PT) pCO2
L pH
Lactate pO2
MCH
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APPENDIX B

Graph Representation Learning

B.1 Hyperparameter Search Methodology and

Implementation Details

For each model, we conducted 10 random hyperparameter trials. The selected hyperpa-
rameters for the main set of results in Table 4.4 can be found in Tables B.1, B.2, B.3 and
B.4. The hyperparameter search ranges can be seen in Table B.5. The hyperparameters
for the dynamic models (Table 4.5) and ablation studies (Table 4.6) can be found in our
code repository: https://github.com/EmmaRocheteau/eICU-GNN-LSTM/blob/master/

src/hyperparameters/best_parameters.py.
All deep learning methods were implemented in PyTorch and optimised using Adam

[57]. We used PyTorch Lightning [28] and Tune to structure our experiments and easily
compare different hyperparameter choices. The maximum number of epochs was 25,
although many models finished before this due to early stopping.

Table B.1: LSTM hyperparameters. The best parameters are shown for both the LoS task and
mortality.

Hyperparameter LoS Mortality

Batch Size 32 256
Dropout Rate 0.134 0.039
Learning Rate 0.0010 0.0006
L2 Regularisation 0.00094 0.00002
LSTM Hidden State 64 64
Static Embedding Size 64 64
LSTM Layers 2 2
Final FC Layer Size 32 32
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Table B.2: GraphSAGE hyperparameters. The best parameters are shown for both the LoS
task and mortality.

Hyperparameter LoS Mortality

Batch Size 256 64
Dropout Rate 0.352 0.252
Learning Rate 0.0007 0.0006
L2 Regularisation 0.00005 0.00002
Neighbour Sample Size 1 10 10
Neighbour Sample Size 2 30 20
GNN Output Dimension 64 64
GNN Hidden Dimension 256 64

Table B.3: GAT hyperparameters. Hyperparameters marked with * were fixed across all of the
models.

Hyperparameter LoS Mortality

Batch Size 128 128
Dropout Rate 0.224 0.224
Learning Rate 0.0007 0.0006
L2 Regularisation 0.00033 0.00033
Neighbour Sample Size 1 30 10
Neighbour Sample Size 2 10 20
GNN Output Dimension 256 64
GNN Hidden Dimension 128 64
GAT Attention Heads 12 12
GAT Output Heads 10 10
GAT Feature Dropout 0.454 0.7
GAT Attention Dropout 0.616 0.7

Table B.4: MPNN hyperparameters. Hyperparameters marked with * were fixed across all of
the models.

Hyperparameter LoS Mortality

Batch Size 32 32
Dropout Rate 0.486 0.252
Learning Rate 0.0007 0.0006
L2 Regularisation 0.00002 0.00002
Neighbour Sample Size 20 10
GNN Output Dimension 512 64
GNN Hidden Dimension 64 64
MPNN MP Steps 4 4

144



Table B.5: Hyperparameter Search Ranges.

Hyperparameter Lower Upper Scale

Batch Size 32 256 log2
Dropout Rate 0 0.5 Linear
Learning Rate 0.0005 0.001 Log-Linear
L2 Regularisation 0.00001 0.001 Log-Linear
Node Sample Size 5 30 Linear
GNN Output Dimension 64 512 log2
GNN Hidden Dimension 64 512 log2
LSTM Hidden State 64 512 log2
Static Embedding Size 64 512 log2
GCN Dropout 0.2 0.7 Linear
GAT Attention Heads 8 12 Linear
GAT Output Heads 6 10 Linear
GAT Feature Dropout 0.2 0.7 Linear
GAT Attention Dropout 0.2 0.7 Linear
MPNN MP Steps 1 5 Linear
LSTM Layers 1 5 Linear
Final FC Layer Size 32 256 log2
α 0.5 3 Log-Linear
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APPENDIX C

Dynamic Outcomes-Based
Clustering

C.1 Hyperparameter Search Methodology and

Implementation Details

All the encoders have hyperparameters that can broadly be split into three categories:
time series specific, non-time series specific and global parameters (shown in more detail
in Tables C.1, C.2 and C.3). The hyperparameter search ranges have been included in
Table C.4. The search was conducted very similarly to that described in Section A.1. I
ran 10 hyperparameter trials to optimise the remaining parameters for the TPC, LSTM,
and Transformer models. The number of epochs was determined by selecting the best
validation performance from a model trained over 300 epochs (early stopping was then
used for each individual model). All deep learning methods were implemented in PyTorch
[80] using PyTorch Lightning [28] and were optimised using Adam [57].

I also optimised for the weighting between the tasks. I simply multiplied the loss for
each component by a hyperparameter. The best overall learning curves were found when
the task weighting coefficients were: 0.5 for the duration tasks, 1 for the binary tasks, 0.1
for time series reconstruction and forecasting, and 0.002 for binary feature reconstruction.
The reason for the small weighting for binary feature reconstruction was that the task
appeared very easy for the models, especially predicting the sex of the patient, and so the
representation became dominated with this at the expense of the other tasks.
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Table C.1: The TPC model has 11 hyperparameters (Main Dropout and Batch Normalisation
have been repeated in the table because they apply to multiple parts of the model). I allowed
the model to optimise a custom dropout rate for the temporal convolutions because they have
fewer parameters and might need less regularisation than the rest of the model. The best
hyperparameter values are shown in brackets. Hyperparameters marked with * were fixed across
all of the models.

TPC Specific
Temporal Specific Pointwise Specific

Temp. Channels (6) Point. Channels (14)
Temp. Dropout (0.05) Main Dropout* (0.05)
Kernel Size (3)

Batch Normalisation* (True)
No. TPC Layers (6)

Non-TPC Specific Global Parameters

Batch Normalisation* (True) Batch Size (128)
Main Dropout* (0.05) Learning Rate (0.0001)
Final FC Layer Size* (16) Embedding Size (128)

Table C.2: The LSTM model has 8 hyperparameters. I allowed the model to optimise a custom
dropout rate for the LSTM layers. Note that batch normalisation is not applicable to the LSTM
layers. The best hyperparameter values are shown in brackets. Hyperparameters marked with *
were fixed across all of the models.

LSTM Specific Non-LSTM Specific Global Parameters

Hidden State (128) Batch Normalisation* (True) Batch Size (128)
LSTM Dropout (0.05) Main Dropout* (0.05) Learning Rate (0.0001)
No. LSTM Layers (2) Embedding Size (128)

Table C.3: The Transformer model has 9 hyperparameters. Note that batch normalisation is
not applicable to the Transformer layers (the default implementation uses layer normalisation).
The best hyperparameter values are shown in brackets. Hyperparameters marked with * were
fixed across all of the models.

Transformer Specific Non-Transformer Specific Global Parameters

No. Attention Heads (2) Batch Normalisation* (True) Batch Size (128)
Feedforward Size (256) Main Dropout* (0.05) Learning Rate (0.0001)
dmodel (16)
Transformer Dropout (0.05)
No. Transformer Layers (6)
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Table C.4: Hyperparameter Search Ranges. I took a random sample from each range and
converted to an integer if necessary. For the kernel sizes (not shown in the table) the range was
dependent on the number of TPC layers selected (because large kernel sizes combined with a
large number of layers can have an inappropriately wide range as the dilation factor increases per
layer). In general the range of kernel sizes was around 2-5 (but it could be up to 10 for small
numbers of TPC Layers).

Hyperparameter Lower Upper Scale

Batch Size 4 512 log2
Dropout Rate (all) 0 0.5 Linear
Learning Rate 0.0001 0.01 log10
Batch Normalisation True False
Final FC Layer Size 16 64 log2
Point. Channels 4 16 log2
Temp. Channels 4 16 log2
LSTM Hidden State Size 16 256 log2
dmodel 16 256 log2
Feedforward Size 16 256 log2
No. Attention Heads 2 16 log2
No. TPC Layers 1 12 Linear
No. LSTM Layers 1 4 Linear
No. Transformer Layers 1 10 Linear
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C.1.1 Number of Clusters

The value of k was determined using an average value from the elbow method across
various encoders. Specifically I looked for the point at which the Within Cluster Sum
of Squares (WCSS) started to tail off with increasing values of k. Figure C.1 shows an
example elbow plot. I selected the value 5 across all the models.

Figure C.1: Elbow plot for the TPC model.
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C.2 Additional Results and Figures

Table C.5: Time Series features. The features which do not have a source table were calculated
from the other features available in the data. ‘Mandatory Ventilation’ and ‘Patient Triggered’
were calculated from the ventilator settings as outlined in Table C.6.

Feature Type Source Table

ABP gemiddeld Continuous numericitems
Ademfreq. Continuous numericitems
Alb.Chem (bloed) Continuous numericitems
Bilirubine (bloed) Continuous numericitems
CRP (bloed) Continuous numericitems
End tidal CO2 concentratie Continuous numericitems
Exp. tidal volume Continuous numericitems
Glucose (bloed) Continuous numericitems
Hartfrequentie Continuous numericitems
Ht (bloed) Continuous numericitems
Kalium (bloed) Continuous numericitems
Kreatinine (bloed) Continuous numericitems
Lactaat (bloed) Continuous numericitems
Leuco’s (bloed) Continuous numericitems
Natrium (bloed) Continuous numericitems
O2 concentratie Continuous numericitems
P/F ratio Continuous
PC Continuous numericitems
PEEP (Set) Continuous numericitems
PO2 (bloed) Continuous numericitems
Piek druk Continuous numericitems
Saturatie (Monitor) Continuous numericitems
Temp. Continuous numericitems
Thrombo’s (bloed) Continuous numericitems
TroponineT (bloed) Continuous numericitems
UrineCAD Continuous numericitems
lung compliance Continuous
mandatory ventilation Binary
pCO2 (bloed) Continuous numericitems
pH (bloed) Continuous numericitems
patient triggered Binary
Time in the ICU Discrete

151



Table C.6: Ventilator Settings Classification, used to produce the features ‘Patient Triggered’
and ‘Mandatory Ventilation’ in Table C.5.

Patient Triggered Ventilation Mandatory Ventilation

Bi Vente MMV
NAVA VC
PRVC PC
PRVC (trig) Pressure Controled
PS/CPAP (trig) PC (No trig)
SIMV(PC)+PS PRVC (No trig)
SIMV(VC)+PS VC (No trig)
VC (trig) CPPV
VS IPPV
SIMV_ASB SIMV
CPAP BIPAP
BIPAP-SIMV/ASB
MMV_ASB
MMV/ASB
ASB
IPPV/ASSIST
CPPV/ASSIST
CPPV_Assist
IPPV_Assist
SIMV/ASB
CPAP_ASB
PS/CPAP
BIPAP/ASB
CPAP/ASB
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