

Representation Learning for Patients in the Intensive Care Unit

Emma Rocheteau

Department of Computer Science and Technology, University of Cambridge

Thesis Presentation 6th March, 2023

Chapter 3: Temporal Pointwise Convolution

Data: Electronic Health Records in Intensive Care

elCU

- ▶ 200,859 ICU stays
- Admitted between 2014 and 2015
- ▶ 208 different hospitals across the US

MIMIC-IV

- ▶ 69,619 ICU stays
- Admitted between 2008 and 2019
- ► Beth Israel Deaconess Medical Center in Boston

Data: Electronic Health Records in Intensive Care

Both datasets contain:

- Vital Signs e.g. heart rate
- Lab Results e.g. blood glucose
- Demographics e.g. age
- Diagnoses
- Medications

What do we want the model to extract?

▶ Temporal trends

► Inter-feature relationships

Example

Temporal Convolution

Temporal Receptive Fields

Pointwise Convolution

Model (one TPC layer)

eICU LoS Results

MIMIC-IV LoS Results

eICU Mortality Results

MIMIC-IV Mortality Results

Why does TPC do well on EHR time series?

- ► It has been specifically designed to be able to extract trends and inter-feature relationships.
- It can choose its own temporal receptive field sizes (independently for each feature) because of the skip connections.
- Rigid convolutional filters can exploit periodicity in EHR timeseries.

Chapter 4: Graph Representation Learning

Diagnosis Information is Hard to Use

Distribution of Diagnoses in the eICU Database

"Relatedness": Grouping Similar Patients

Graph Neural Networks (GNNs)

Graph Construction

The "relatedness" score between two patients i and j is given by:

Shared Diagnoses
$$\mathcal{M}_{ij} = a \sum_{\mu=1}^{m} \left(\mathcal{D}_{i\mu} \mathcal{D}_{j\mu} (d_{\mu}^{-1} + c) \right) - \sum_{\mu=1}^{m} \left(\mathcal{D}_{i\mu} + \mathcal{D}_{j\mu} \right)$$
(1)

where

- ▶ $\mathcal{D} \in \mathbb{R}^{N \times m}$ is a diagnosis matrix,
- N is the number of patients,
- ► *m* is the number of unique diagnoses,
- d_{μ} is the frequency of diagnosis μ ,
- ▶ a and c are tunable constants.

Hybrid LSTM-GNN Model

Results

Visualisation: LSTM-GAT* attention weights

Chapter 5: Dynamic Outcomes-Based Clustering

Why Cluster Patients on Mechanical Ventilation?

- ► Patients on mechanical ventilation are highly heterogeneous.
- Clustering would help to generate:
 - Interpretable early warning systems.
 - Further understanding of disease trajectories.
 - Early categorisation of patients for intervention.

Data: Electronic Health Records in Intensive Care

AmsterdamUMCdb

- ▶ 14,836 ventilation episodes.
- ▶ Contains:
 - Vital Signs e.g. heart rate, blood pressure
 - ► Lab Results e.g. blood glucose
 - ► Demographics e.g. age, sex, ethnicity

Methods

Outcome Task Performance: Binary

Outcome Task Performance: Duration

Cluster Analysis

Latent Space Visualisation

The clusters are remarkably stable over time

Most patients only appear in one cluster

Stable categorisation happens very early

Summary

- 1. The TPC model outperforms alternative encoders.
- 2. We can generate clinically meaningful and interpretable clusters.
- 3. The clusters are remarkably stable across time, and membership is determined early on.
- 4. Stable cluster transitions do occur, and are an important avenue for future work.

Thank you! (With special mentions to...)

My funders:

The Armstrong Fund and The Frank Elmore Fund

My supervisor:

Pietro Liò

My wonderful co-authors and mentors:

Stephanie Hyland, Petar Veličković, Catherine Tong, Ioana Bica, Nicholas Lane, Rudolf Cardinal and Ari Ercole

Model Reliability

ICU Simulation Study

Data Type Ablation

Training Data Size

Alternative Encoders

Different Initialisation Seeds

Number of Clusters

"Stable" Cluster Transitions

Transition	Count	Median Time	Mortality (%)	Tracheostomy (%)	Urgency (%)	VD	LoS
3→1	17	3	76.5	0.0	47.1	0.5	0.7
5→1	29	16	51.7	10.3	55.2	4.3	5.3
1→3	28	11	10.7	0.0	67.9	1.0	2.6
5→3	46	9	15.2	4.3	41.3	1.2	6.5
2→4	28	17	10.7	21.4	42.9	6.2	12.8
5→4	27	10	11.1	7.4	48.1	3.4	9.1
1→5	25	3	44.0	4.0	68.0	3.9	6.5
$3\rightarrow 5$	15	4	13.3	13.3	53.3	1.9	4.6
4→5	15	56	26.7	26.7	46.7	6.6	11.5

