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ABSTRACT

The pressure of ever-increasing patient demand and budget re-

strictions make hospital bed management a daily challenge for

clinical staff. Most critical is the efficient allocation of resource-

heavy Intensive Care Unit (ICU) beds to the patients who need

life support. Central to solving this problem is knowing for how

long the current set of ICU patients are likely to stay in the unit.

In this work, we propose a new deep learning model based on the

combination of temporal convolution and pointwise (1x1) convo-

lution, to solve the length of stay prediction task on the eICU and

MIMIC-IV critical care datasets. The model – which we refer to as

Temporal Pointwise Convolution (TPC) – is specifically designed to

mitigate common challenges with Electronic Health Records, such

as skewness, irregular sampling and missing data. In doing so, we

have achieved significant performance benefits of 18-68% (metric

and dataset dependent) over the commonly used Long-Short Term

Memory (LSTM) network, and the multi-head self-attention net-

work known as the Transformer. By adding mortality prediction

as a side-task, we can improve performance further still, resulting

in a mean absolute deviation of 1.55 days (eICU) and 2.28 days

(MIMIC-IV) on predicting remaining length of stay.
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1 INTRODUCTION

In-patient length of stay (LoS) explains approximately 85-90% of

inter-patient variation in hospital costs in the United States [37].

Extended length of stay is associated with increased risk of contract-

ing hospital acquired infections [15] and mortality [23]. Hospital

bed planning can help to mitigate these risks and improve patient

experiences [1]. This is particularly important in the intensive care

unit (ICU), which has the highest operational costs in the hospital

[7] and a limited supply of specialist staff and resources.

At present, discharge date estimates are done manually by clini-

cians, but these rapidly become out-of-date and can be unreliable

(for example Mak et al. [26] found that the average error made

by clinicians was 3.82 days). Automated systems drawing on the

electronic health record (EHR) have the potential to improve fore-

casting accuracy using state-of-the-art models that can be updated

in light of new data. This has efficiency benefits in reducing the

administrative burden on clinicians, and the improved accuracy

may enable more sophisticated planning strategies e.g. scheduling

high-risk elective surgeries on days with more availability [10].

In our work, we simulate real-time predictions in retrospective

data by updating the patients’ remaining ICU length of stay predic-

tion at hourly intervals during their stay using the preceding data

from the EHR (similar to Harutyunyan et al. [14]). When designing

both the architecture and pre-processing, we focus on mitigating

the effects of non-random missingness due to irregular sampling,

sparsity, outliers, skew, and other common biases in EHR data. Our

key contributions are:

(1) A new model – Temporal Pointwise Convolution (TPC) –

which combines:

• Temporal convolutional layers [21, 54], which capture

causal dependencies across the time domain.

• Pointwise convolutional layers [24], which compute higher

level features from interactions in the feature domain.

Our model significantly outperforms the commonly used

Long-Short Term Memory (LSTM) network [17] and the

Transformer [55] by margins of 18-68%.

(2) We make a case for using the mean-squared logarithmic

error (MSLE) loss function to train LoS models, as it deals

more naturally with positively-skewed labels.

(3) By adding in-hospital mortality as a side-task, we demon-

strate further performance gains in the multitask setting.

(4) We perform several investigations to improve our under-

standing of the model, including: an extensive ablation study

of the model architecture, a post-hoc analysis of feature im-

portances with integrated gradients [49], and a visualisation

to show the model reliability as a function of the time since

admission and the predicted remaining LoS.
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Figure 1: Total and remaining LoS distributions in the eICU

dataset. The remaining LoS has a significant positive skew,

with mean and median values of 3.47 and 1.67 days respec-

tively. The skew in MIMIC-IV (not shown) is even more pro-

nounced (5.70 and 2.70 days).

Additionally, we develop a data processing pipeline for the eICU

[32] and MIMIC-IV [20] databases that is designed to i) mitigate

some of the impact of sparsity (for the diagnoses) and missing

data (for time series) in the EHR and ii) extract a wide variety of

features semi-automatically such that the approach is generalisable

to other EHR databases. Our code is available at: https://github.

com/EmmaRocheteau/TPC-LoS-prediction.

2 RELATEDWORK

Despite its importance, LoS prediction has received less attention

than mortality prediction. This could be due to its difficulty; LoS

depends heavily on operational factors and there is considerable

positive skew in its distribution (see Figure 1). While it has been ad-

dressed as a regression problem (optimised using the mean-squared

error (MSE) [35, 44]), it is often simplified into binary classification

(short vs. long stay) [12, 30, 36], or as a multi-class task [14]. This

simplification comes at a cost of utility, so we choose to focus on

the more challenging regression variant.

Owing to the centrality of time series in the EHR, LSTMs have

been by far the most popular model for predicting LoS [14, 36, 44].

This reflects the prominence of LSTMs in other clinical prediction

tasks such as predicting in-hospital adverse events including car-

diac arrest [53] and acute kidney injury [52], forecasting diagnoses,

medications and interventions [5, 25, 50], missing-data imputation

[3], and mortality prediction [4, 14, 45]. More recently, the Trans-

former model [55] been shown to marginally outperform the LSTM

on LoS [46] (and it continues to dominate in many other domains

[29]). Therefore, the LSTM and the Transformer were chosen as

key baselines.

Temporal convolution models have previously been applied to

the task of early disease detection using longitudinal lab tests

[31, 38, 39], yielding similar results to the LSTM. We highlight

two main differences in our work: we introduce a set of pointwise

convolutions in parallel, and the temporal convolution filters do

not share their parameters between features, allowing the model to

optimise processing in spite of heterogeneity in the temporal char-

acteristics. We demonstrate via ablation studies how these design

choices contribute substantial improvements to the patient state

representation, yielding state-of-the-art results on LoS prediction.

3 METHODS

3.1 Model Overview

We want our model to extract both temporal trends and inter-

feature relationships in order to capture the patient’s clinical state.

Consider a patient who is experiencing slowly worsening respira-

tory symptoms but is otherwise stable. As this patient is unlikely

to be weaned from their ventilator in the near future, a clinician

might anticipate a long remaining LoS, but how do they come to

this conclusion? Intuitively, one of the factors they are evaluating

is the trajectory of the patient e.g. they may ask themselves “Is the

respiratory rate getting better or deteriorating?”. However, they

can obtain a better indication of lung function by combining certain

features e.g. the PaO2/FiO2 ratio, and then looking at how these

vary over time. A model should therefore be adept at extracting and

combining both intra-feature temporal statistics and inter-feature

relationships.

Formally, our task is to predict the remaining LoS at regular

timepoints 𝑦1, . . . , 𝑦𝑇 ∈ R>0 in the patient’s ICU stay, up to the

discharge time 𝑇 , using the diagnoses (d ∈ R𝐷×1), static features

(s ∈ R𝑆×1), and time series (x1, . . . , x𝑇 ∈ R𝐹×2). Initially, for every

timepoint 𝑡 , there are two ‘channels’ per time series feature: 𝐹 fea-
ture values (x′𝑡 ∈ R

𝐹×1), and their corresponding decay indicators

(x′′𝑡 ∈ R𝐹×1). The decay indicators tell the model how recently

the observation x′𝑡 was recorded. They are described in detail in

Section 4. As we pass through the layers of our model, we repeat-

edly extract trends and inter-feature relationships using a novel

combination of techniques.

3.2 Temporal Convolution

Temporal Convolution Networks (TCNs) [21, 54] are a subclass

of convolutional neural networks [9] that convolve over the time

dimension. They operate on two key principles: the output is the

same length as the input, and there can be no leakage of data from

the future. We use stacked TCNs to extract temporal trends in our

data. Unlike most implementations including [38], we do not share

weights across features i.e. weight sharing is only across time (like

in Xception [6]). This is because our features differ sufficiently in

their temporal characteristics to warrant specialised processing.

We define the temporal convolution operation for the 𝑖th feature
in the 𝑛th layer as

(𝑓 𝑛,𝑖 ∗ h𝑛,𝑖 ) (𝑡) =
𝑘∑
𝑗=1

𝑓 𝑛,𝑖 [ 𝑗] h𝑛,𝑖
𝑡−𝑑 ( 𝑗−1)

(1)

where h𝑛,𝑖1:𝑡 ∈ R
𝐶𝑛×𝑡 represents the temporal input to layer 𝑛 up to

timepoint 𝑡 , which contains 𝐶𝑛 channels per feature1. The convo-

lutional filter 𝑓 𝑛,𝑖 : {1, . . . , 𝑘} → R𝑌×𝐶
𝑛
is a tensor of 𝑌 ×𝐶𝑛 × 𝑘

parameters per feature. It maps 𝐶𝑛 input channels into 𝑌 output

1In the first layer, the input h𝑛,𝑖1:𝑡 is the original data x
𝑛,𝑖
1:𝑡 ∈ R2×𝑡 , so𝐶1 = 2.
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channels while examining 𝑘 timesteps. The output is therefore

(𝑓 𝑛,𝑖 ∗ h𝑛,𝑖 ) (𝑡)� ∈ R1×𝑌 . The dilation factor, 𝑑 , and kernel size, 𝑘 ,
together determine the temporal receptive field or ‘timespan’ of

the filter: 𝑑 (𝑘 − 1) + 1 hours for a single layer. To ensure that the

output is always length𝑇 , we add left-sided padding of size 𝑑 (𝑘 −1)
before every temporal convolution (not shown in equation 1). The

𝑡 −𝑑 ( 𝑗 − 1) term ensures that we only look backwards in time. The

receptive field can be increased by stacking multiple TCNs (as in

Wavenet [54] and ByteNet [21]). We increment the dilation by 1

with each layer i.e. 𝑑 = 𝑛.
We concatenate the temporal convolution outputs for each fea-

ture, 𝑖 as follows

(𝑓 𝑛 ∗

Temp. In.(1)︷︸︸︷
h𝑛 )︸���������︷︷���������︸

Temp. Out.(2)

(𝑡) =
𝑅𝑛�

𝑖=1

(𝑓 𝑛,𝑖 ∗ h𝑛,𝑖 ) (𝑡)� (2)

We use
�
to denote concatenation i.e.

�𝐴
𝑖=1 a

𝑖 = a1 ‖ . . . ‖ a𝐴 . In our
case, the output dimensions are 𝑅𝑛 × 𝑌 , where 𝑅𝑛 is the number
of temporal input features. Throughout this section we label terms

with numbers (1), (2) etc. corresponding to objects in Figure 3. We

recommend following this alongside the equations.

3.3 Pointwise Convolution

Pointwise convolution [24], also referred to as 1 × 1 convolution, is

typically used to reduce the channel dimension when processing

images [51]. It can be conceptualised as a fully connected layer,

applied separately to each timepoint (shown diagrammatically in

Figure 2). As in temporal convolution, the weights are shared across

all timepoints; however, there is no information transfer across

time. Instead, information is shared across the features to obtain

𝑍 interaction features2, p𝑛𝑡 = (♭(h𝑛𝑡 ) ‖ s ‖ x′′𝑡 ) ∈ R𝑃
𝑛×1, where

𝑃𝑛 = (𝑅𝑛 ×𝐶𝑛) +𝐹 +𝑆 , and ♭ : 𝐴𝑑1×𝑑2 ...×𝑑𝑛 → 𝐴(𝑑1 ·𝑑2 ... ·𝑑𝑛)×1 is the

flatten operation. We define the pointwise convolution operation

in the 𝑛th layer as

(𝑔𝑛 ∗

Point. In.(4)︷︸︸︷
p𝑛 )︸���������︷︷���������︸

Point. Out.(5)

(𝑡) =
𝑃𝑛∑
𝑖=1

𝑔𝑛 [𝑖]𝑝𝑛,𝑖𝑡 (3)

where 𝑔𝑛 : {1, . . . , 𝑃𝑛} → R
𝑍×1 is the pointwise filter, and the

resulting convolution produces𝑍 output channels, so (𝑔𝑛 ∗p𝑛) (𝑡) ∈
R
𝑍×1.

3.4 Skip Connections

We propagate skip connections [16] to allow each layer to see the

original data and the pointwise outputs from previous layers. This

helps the network to cope with sparsely sampled data. For example,

suppose a particular blood test is taken once per day. In order not

to lose temporal resolution, we forward-fill these data (Section 4)

and convolve with increasingly dilated temporal filters until we

find the appropriate width to capture a useful trend. However, if

the smaller filters in previous layers (which did not see any useful

trend) have polluted the original data by re-weighting, learning

2We use a wider set of features for pointwise convolution, including static features s

and decay indicators x′′ i.e. p𝑛𝑡 = (♭(h𝑛𝑡 ) ‖ s ‖ x′′𝑡 ) ∈ R𝑃
𝑛×1.

(a)

d=1

d=2

d=3

…

(b)

…

Figure 2: (a) Temporal convolution with skip connections

(green lines). Each time series, 𝑖 (blue dots) and their de-

cay indicators (pale orange dots) are processed with inde-

pendent parameters. (b) Pointwise convolution. There is no

information sharing across time, only across features (blue,

green, yellow dots).

will be harder. Therefore, skip connections provide a consistent

anchor to the input. They are concatenated (like in DenseNet [18],

and are arranged in the shared-source connection formation [57])

as illustrated in Figure 2. The skip connections expand the feature

dimension, 𝑅𝑛 = 𝐹 + 𝑍 (𝑛 − 1), to accommodate the pointwise

outputs, and also the channel dimension to fit the original data,

𝐶𝑛 = 𝑌 + 1. This is best visualised in Figure 3.

3.5 Temporal Pointwise Convolution

Our model – which we refer to as Temporal Pointwise Convolution

(TPC) – combines temporal and pointwise convolution in parallel.

Firstly, the temporal output is combined with the skip connections

to form r𝑛𝑡 (Step 3 in Figure 3).

r𝑛𝑡︸︷︷︸
(3)

= (𝑓 𝑛 ∗ h𝑛𝑡 )︸�����︷︷�����︸
Temp. Out.(2)

‖ x′𝑡 ‖
[ 𝑛−1�

𝑛′=1

(𝑔𝑛
′

∗ p𝑛
′

𝑡 )

︸����������������������︷︷����������������������︸
Skip Connections

]
(4)

r𝑛𝑡 is then concatenated with the pointwise output after it has been

broadcast 𝑌 + 1 times. We can therefore define the 𝑛th TPC layer as

h
(𝑛+1)
𝑡︸�︷︷�︸

TPC Out.(6)

= 𝜎

(
r𝑛𝑡︸︷︷︸
(3)

‖
[ 𝑌+1�

𝑖=1

(𝑔𝑛 ∗ p𝑛𝑡 )︸�����︷︷�����︸
Point. Out.(5)

] )
(5)

where 𝜎 represents the ReLU activation function. The full model has
𝑁 TPC layers stacked sequentially. After 𝑁 layers, the output h𝑁𝑡 is

combined with static features s ∈ R𝑆×1, and a diagnosis embedding

d∗ ∈ R𝐷
∗×1. Two pointwise layers are then applied to obtain the

final predictions (see Appendix A for the full details). We use batch

normalisation [19] and dropout [47] throughout to regularise the

model.
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(3)

(4)
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Figure 3: The 𝑛th TPC layer. Left-sided padding (off-white) is

added to the temporal side before each feature is processed

independently. On the pointwise side, flat features (yellow)

and decay indicators (orange) are added before each convo-

lution.

3.6 Loss Function

The remaining LoS has a positive skew (shown in Figure 1) which

makes the prediction task more challenging. We address this by

replacing the commonly-used mean squared error (MSE) loss with

mean squared log error (MSLE).

L =
1

𝑇

𝑇∑
𝑡=1

(log(𝑦𝑡 ) − log(𝑦𝑡 ))
2 (6)

MSLE penalises proportional errors, which is more reasonable when

considering an error of e.g. 5 days in the context of a 2-day stay

vs. a 30-day stay. The difference can be seen in Figure 4. For bed

management purposes it is particularly important not to harshly pe-

nalise over-predictions – the model will become overly cautious and

Figure 4: The behaviour of squared logarithmic error (blue)

and squared error (red) functions when the true LoS is 1 day.

regress its predictions towards the mean. This is counter-productive

because long stay patients have a disproportionate effect on bed

occupancy.

4 DATA

4.1 eICU Database

We use the eICU Collaborative Research Database [32], a multi-

centre dataset collated from 208 care centres in the United States,

available through PhysioNet [11]. It comprises 200,859 patient unit

encounters for 139,367 unique patients admitted to ICUs between

2014 and 2015.

We selected all adult patients (>18 years) with an ICU LoS of at

least 5 hours and at least one recorded observation, resulting in

118,535 unique patients and 146,671 ICU stays. We selected 87 time

series from the following tables: lab, nursecharting, respiratorychart-

ing, vitalperiodic and vitalaperiodic. To be included, variables had to

be present in at least 12.5% of patient stays, or 25% for lab variables.

As shown in Figure 5, the lab variables tend to be sparsely sampled.

To help the model cope with this missing data, we forward-filled

over the gaps. This is more realistic than interpolation as the clini-

cian would only have the most recent value. We then added ‘decay

indicators’ to specify where the data is stale. The decay was calcu-

lated as 0.75𝑗 , where 𝑗 is the time since the last recording. This is
similar in spirit to the masking used by Che et al. [4].

We extracted diagnoses from the pasthistory, admissiondx and

diagnoses tables, and 17 static features from the patient, apachepa-

tientresult and hospital tables (see Tables 5 and 16, and Appendix B

for the full list of features and further details).

4.2 MIMIC-IV Database

We verify our results on a second dataset, the Medical Informa-

tion Mart for Intensive Care (MIMIC-IV v0.4) database [20], a de-

identified and publicly available EHR dataset from the Beth Israel

Deaconess Medical Center containing 69,619 ICU stays from 50,048

patients admitted between 2008 and 2019.

We use the same cohort selection criteria as in eICU to select

69,609 ICU stays from 50,042 patients. We followed the same feature

selection process to obtain a short list of 172 time series from the

chartevents and labevents. We manually removed 71 of these from
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Figure 5: Example data from a patient in eICU (after pre-

processing). The colour scale indicates the value of the fea-

ture, and the narrow bars show the corresponding decay

indicators. Blood glucose, potassium and lymphocytes are

from the lab table and are sparsely sampled. Non-invasive

blood pressure is manually recorded by the nurse every 2

hours, while respiratory rate and heart rate are vital signs

that are automatically logged.

chartevents because the variable did not vary over time, or because

the distribution was not found to provide useful discrimination be-

tween patients (see Table 17 for the final list of features). We filled

the missing data in the same way as in eICU. We extracted 12 flat

features from the icustays, admissions, patients and chartevents ta-

bles (Table 6). We did not extract diagnoses fromMIMIC-IV because

they are not associated with reliable timestamps.

Table 1: Cohort summaries.

eICU MIMIC-IV

Number of patients 118,535 50,042

Train 82,973 35,028

Validation 17,781 7,507

Test 17,781 7,507

Number of stays 146,671 69,609

Train 102,749 48,848

Validation 22,033 10,497

Test 21,889 10,264

Gender (% male) 54.1% 55.8%

Age (mean) 63.1 64.7

LoS (mean) 3.01 3.98

LoS (median) 1.82 2.06

Remaining LoS (mean) 3.47 5.70

Remaining LoS (median) 1.67 2.70

In-hospital mortality 9.25% 11.4%

Number of input features 104 113

Time series 87 101

Static 17 12

5 EXPERIMENTS

In this section, we describe the prediction tasks, baseline models

and evaluation metrics. As in Harutyunyan et al. [14] the training

and test data was fixed upfront – the patients were divided such

that 70% were used for training, 15% for validation, and 15% for

testing.

5.1 Prediction tasks

5.1.1 Remaining Length of Stay. We assign a remaining LoS target

to each hour of the stay, beginning at 5 hours and ending when

the patient dies or is discharged. We train the models to make a

prediction every hour of the stay. We only include the first 14 days

of any patient’s stay to protect against very long batches which

would slow down training. This cut-off applies to <5% of patient

stays, but it does not affect their maximum remaining LoS values.

5.1.2 In-Hospital Mortality. We also tested the performance of the

models on mortality prediction. Unlike LoS, these labels remain

static throughout the patient stay. We used the same training pro-

cedure as the LoS task i.e. one prediction each hour. However, to

reflect the approach taken by Purushotham et al. [34] and Haru-

tyunyan et al. [14], we only report the mortality performance once

per patient (at 24 hours into the stay). This means that the cohort

represented in the mortality metrics in Table 4 is smaller (16,239 of

21,889 test stays in eICU and 8,320 of 10,264 test stays in MIMIC-IV).

5.1.3 Multitask. Previous work has found merit in a multitask

approach to patient outcome prediction [14, 44]. We investigated

whether we would see a similar benefit in the TPC model. When

combining the LoS and mortality losses, we applied a relative

weighting to the mortality loss – dictated by a parameter 𝛼 (which

was treated as a hyperparameter). Further information on the hy-

perparameter search and implementation details is in Appendix C.

5.2 Baselines

We include the following baselines in our experiments:

‘Mean’ and ‘Median’ models (LoS only). These always predict

3.47 and 1.67 days respectively for eICU and 5.70 and 2.70 days for

MIMIC-IV (these correspond to the mean and median of the train-

ing data). This is to benchmark the level of performance which is

achievable ‘for free’ just by predicting in a reasonable range, and to

provide points of reference when setting performance expectations

for each dataset.

APACHE-IV values [58] (eICU only). These are generated by a

risk assessment scoring model which is evaluated only once per

patient at 24 hours. Therefore it cannot be compared directly, but

we include it only as a point of reference for a widely used clinical

model. APACHE-IV is only present in the eICU dataset.

Standard LSTM. Our standard LSTM is similar to Harutyunyan

et al. [14].

Channel-wise LSTM (CW LSTM). Again similar to Harutyunyan

et al. [14], this consists of a set of independent LSTMs that process

each feature separately before concatenation (note the similarity

with the independent temporal convolutions in the TPC model).

Transformer. This model takes advantage of multi-head self-

attention. Like the TPC model, it is not constrained to progress

one timestep at a time; however, unlike TPC, it is not able to scale

its receptive fields or process features independently.
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Table 2: Performance of the TPCmodel compared to baselinemodels. The loss function in all experiments isMSLE. For the first

fourmetrics, lower is better. The errormargins are 95% confidence intervals (CIs) calculated over 10 runs. These are not present

for the mean, median and APACHE-IV models because they are deterministic. The best results are highlighted in blue. If the

result is statistically significant on a t-test then it is indicated with stars (*p<0.05, **p<0.001). MAD: mean absolute deviation;

MAPE: mean absolute percentage error; MSE: mean squared error; MSLE: mean squared logarithmic error; R2: coefficient of

determination, Kappa: Cohen Kappa Score. †Note that the APACHE-IV results (only present in the eICU dataset) cannot be

compared directly to the other models (explained in Section 5.2).

Data Model MAD MAPE MSE MSLE 𝑹2 Kappa

eICU

Mean 3.21 395.7 29.5 2.87 0.00 0.00

Median 2.76 184.4 32.6 2.15 -0.11 0.00

APACHE-IV† 2.54 182.1 16.6† 1.10 -0.01 0.20

LSTM 2.39±0.00 118.2±1.1 26.9±0.1 1.47±0.01 0.09±0.00 0.28±0.00

CW LSTM 2.37±0.00 114.5±0.4 26.6±0.1 1.43±0.00 0.10±0.00 0.30±0.00

Transformer 2.36±0.00 114.1±0.6 26.7±0.1 1.43±0.00 0.09±0.00 0.30±0.00

TPC 1.78±0.02∗∗ 63.5±4.3∗∗ 21.7±0.5∗∗ 0.70±0.03∗∗ 0.27±0.02∗∗ 0.58±0.01∗∗

MIMIC-IV

Mean 5.24 474.9 77.7 2.80 0.00 0.00

Median 4.60 216.8 86.8 2.09 -0.12 0.00

LSTM 3.68±0.02 107.2±3.1 65.7±0.7 1.26±0.01 0.15±0.01 0.43±0.01

CW LSTM 3.68±0.02 107.0±1.8 66.4±0.6 1.23±0.01 0.15±0.01 0.43±0.00

Transformer 3.62±0.02 113.8±1.8 63.4±0.5 1.21±0.01 0.18±0.01 0.45±0.00

TPC 2.39±0.03∗∗ 47.6±1.4∗∗ 46.3±1.3∗∗ 0.39±0.02∗∗ 0.40±0.02∗∗ 0.78±0.01∗∗

5.3 Evaluation Metrics

5.3.1 Length of Stay. We report on 6 LoS metrics: mean absolute

deviation (MAD), mean absolute percentage error (MAPE), mean

squared error (MSE), mean squared log error (MSLE), coefficient

of determination (𝑅2) and Cohen Kappa Score. This is important
because bad models can ‘cheat’ particular metrics just by being

close to the mean or median value (see Appendix D for additional

discussion on this).

5.3.2 In-Hospital Mortality. In the mortality and multitask experi-

ments we report the area under the receiver operating characteris-

tic curve (AUROC) and the area under the precision recall curve

(AUPRC).

6 RESULTS

In this section, we analyse the model in several ways. Firstly, we

report overall performance and compare against a set of baselines.

Next, we examine the role of the loss function. Finally, we perform

a set of ablation studies to find out which components of the model

architecture contribute the most to its success.

6.1 TPC Performance on Length of Stay

The TPC model outperforms all of the baseline models on every

metric on both datasets (Table 2) – particularly those that are

more robust to skewness: MAPE, MSLE and Kappa. Discounting

APACHE-IV, the best performing baseline across both datasets is

the Transformer (although the channel-wise LSTM (CW LSTM) is

similar on eICU). This is consistent with Harutyunyan et al. [14]

(for CW LSTM) and Song et al. [46] (for Transformers), who found

small improvements over standard LSTMs.

Performance differences between eICU and MIMIC-IV. Although

the pattern of results is remarkably similar between eICU and

MIMIC-IV, there are notable differences in the magnitudes of the

metrics. These differences can be attributed to their LoS distribu-

tions – the positive skew is more severe in MIMIC-IV (Table 1). This

skew has a disproportionate impact on the absolute error, which

is captured in the MSE and MAD metrics. Interestingly, the Kappa

score is higher in MIMIC-IV because the model can assign the

longest stay patients to the >8 day bin, whereas eICU has more

medium stay patients in the 3-8 day range which need to be pre-

cisely placed. The most comparable results are the MSLE and MAPE

metrics, both of which penalise the proportional error, making them

more robust to shifts in the LoS distribution.

6.2 Ablation Studies

To understand the impact of each design choice for the TPC model,

we study performance under different ablations on the eICU dataset.

The results of these ablations are reported in Table 3.

6.2.1 MSLE Loss Function. The first two rows of Table 3 show that

using the MSLE (rather than MSE) loss function leads to significant

improvements in the TPC model, with large performance gains in

MAD, MAPE, MSLE and Kappa, while conceding little in terms of

MSE and 𝑅2. The MSE results for the other models are in Appendix
Table 13; they show a similar pattern to the TPC model.

6.2.2 Model Architecture. The second subtable shows that the

temporal-only model is superior to the pointwise-only model, but

neither reaches the performance of the TPC model. The temporal-

only model performs much better than its weight-sharing variant,

which demonstrates the importance of having independent param-

eters per feature. Note that the temporal-only model with weight

sharing is the most similar to the approach taken by Razavian et al.

63



TPC Networks for LoS Prediction in the ICU ACM CHIL ’21, April 8–10, 2021, Virtual Event, USA

Table 3: Ablation studies of the TPC model (performed on the eICU dataset). Unless otherwise specified, the loss function is

MSLE. The first subtable compares the effect of the loss function on the TPCmodel (see Table 13 in the Appendix for the MSE

results of LSTM,CWLSTMandTransformer). The second shows various TPCablation studies. Results that are not significantly

different from the best result are highlighted in light blue. The TPC (MSLE) result has been repeated in each subtable for ease

of comparison. WS: weight sharing; "no skip": no skip connections; "no diag.": no diagnoses, "no decay": no decay indicators.

Model MAD MAPE MSE MSLE 𝑹2 Kappa

TPC (MSLE) 1.78±0.02∗∗ 63.5±4.3∗∗ 21.7±0.5 0.70±0.03∗∗ 0.27±0.02 0.58±0.01∗∗

TPC (MSE) 2.21±0.02 154.3±10.1 21.6±0.2 1.80±0.10 0.27±0.01 0.47±0.01

TPC 1.78±0.02 63.5±3.8∗ 21.8±0.5 0.71±0.03∗ 0.26±0.02 0.58±0.01

Point. only 2.68±0.15 137.8±16.4 29.8±2.9 1.60±0.03 -0.01±0.10 0.38±0.01

Temp. only 1.91±0.01 71.2±1.1 23.1±0.2 0.86±0.01 0.22±0.01 0.52±0.01

Temp. only (WS) 2.34±0.01 116.0±1.2 26.5±0.2 1.40±0.01 0.10±0.01 0.31±0.00

TPC (no skip) 1.93±0.01 73.9±1.9 23.0±0.2 0.89±0.01 0.22±0.01 0.51±0.01

TPC (no diag.) 1.77±0.02 65.6±4.1 21.5±0.5 0.71±0.03∗ 0.27±0.02 0.59±0.01

TPC (no decay) 1.84±0.01 64.5±3.0 22.5±0.3 0.77±0.02 0.24±0.01 0.56±0.01

Point. (no decay) 2.90±0.18 179.1±17.4 34.2±4.6 1.80±0.05 -0.16±0.16 0.33±0.00

Table 4: Performance of the TPC model in the multitask setting. We compare the performance of each model on individual

tasks (mortality only on the first line; LoS only on the second) to the multitask setting (both LoS and mortality on the third

line). The performance of the baseline models are reported in Tables 14 and 15.

In-Hospital Mortality Length of Stay

Data AUROC AUPRC MAD MAPE MSE MSLE 𝑹2 Kappa

eICU

0.864±0.001 0.508±0.005 – – – – – –

– – 1.78±0.02 63.5±3.8 21.8±0.5 0.71±0.03 0.26±0.02 0.58±0.01

0.865±0.002 0.523±0.006∗∗ 1.55±0.01∗∗ 46.4±2.6∗∗ 18.7±0.2∗∗ 0.40±0.02∗∗ 0.37±0.01∗∗ 0.70±0.00∗∗

MIMIC-IV

0.905±0.001 0.691±0.006 – – – – – –

– – 2.39±0.03 47.6±1.4 46.3±1.3 0.39±0.02 0.40±0.02 0.78±0.01

0.918±0.002∗∗ 0.713±0.007∗∗ 2.28±0.07∗ 32.4±1.2∗∗ 42.0±1.2∗∗ 0.19±0.00∗∗ 0.46±0.02∗∗ 0.85±0.00∗∗

[38], and the results are comparable to the LSTMwhich is consistent

with the results presented in the paper. Removing the skip connec-

tions reduces performance by 5-25%. Together the ablation studies

demonstrate that the superior performance of the TPC model is the

culmination of multiple design decisions.

6.2.3 Data. We also tested the models without the diagnoses or de-

cay indicators. Perhaps surprisingly, we found that the exclusion of

diagnoses does not seem to harm the model. This could be because

the relevant diagnoses for predicting LoS e.g. Acute Respiratory

Distress Syndrome (ARDS), are discernible from the time series

alone e.g. PaO2, FiO2, PEEP etc. The decay indicators contribute

a small (but statistically significant) benefit. Their contribution is

more obvious in the pointwise-only model where all of the met-

rics see improvements of 5-23%. This difference is expected since

they might reveal some of the temporal structure to the pointwise

model e.g. reveal links between up-to-date observations and patient

deterioration.

In Appendix E we tested the models without the laboratory tests

(which are infrequently sampled) and without the other time series

(which tend to be regularly monitored). They indicate that the TPC

model is able to exploit disparate EHR time series more successfully

than the baselines. They also show that the advantage of the CW

LSTM over the standard LSTM is only apparent when the model

has to process different types of time series simultaneously.

6.3 Mortality and Multitask Performance

We investigated adding in-patient mortality as a side-task to im-

prove LoS prediction. Table 4 shows the TPC performance both on

single-task mortality prediction, as well as the multi-task setting.

We observe first that TPC achieves good performance on mortality

alone. Comparing the impact on LoS forecasting in the multi-task

setting, we see significant improvements on every metric. Multi-

task performance for all baselines is reported in Tables 14 and 15 in

the Appendix, where the multitask training confers a more modest

benefit.

7 FURTHER ANALYSES

In this section, we further explore the performance and behaviour

of the TPC model for LoS prediction on the eICU dataset. We test its

capacity to exploit smaller datasets, explore which features it uses,

and provide a visualisation of the reliability of the model. Finally,

we simulate the potential use of the model for bed planning.
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7.1 Training Data Size

The TPC model consistently outperforms the baselines when the

training data is small, but we noticed even greater potential for

big data. We tested the TPC, LSTM, CW LSTM, and Transformer

models with 6.25%, 12.5%, 25%, 50%, and 100% of the eICU training

data. TPC maintains the best test performance on all data sizes,

with an increasing benefit for larger data. Figure 6 shows the effect

on MSLE (the full results for all metrics are included in Table 12).

Figure 6: The effect of changing the training data size on

the LSTM, CW LSTM, Transformer, and TPC model perfor-

mance on the eICU dataset. Only the mean squared loga-

rithmic error (MSLE) is shown for clarity, however the other

metrics are shown in Table 12. Note that the performance of

the CW LSTM and Transformer models are so similar that

the curves are superimposed.

7.2 Feature Importance

We used the integrated gradients method [49] to calculate feature

attributions for the LoS estimates in the eICU dataset. This method

computes the importance scores 𝜙𝐼𝐺𝑖 by accumulating gradients

interpolated between a baseline input b (intended to represent the

absence of data) and the current input x:

𝜙𝐼𝐺𝑖 (𝜓, x, b) =

diff. from baseline︷����︸︸����︷
(x𝑖 − b𝑖 ) ×

∫ 1

𝛼=0

acc. local grad.︷�����������������︸︸�����������������︷
𝛿𝜓 (b + 𝛼 (x − b))

𝛿x𝑖
𝑑𝛼 (7)

where the TPC model is represented as𝜓 . We use the mean feature
values as our baseline input vector. We take the absolute attribution

values when a single LoS prediction is made for each patient at 24

hours. We aggregate by taking the mean along the time dimension

and then the patient dimension to obtain Figure 7. The background

and intuition behind the method is explained clearly by Sturmfels

et al. [48].

Analysing Figure 7, we note that the top features are all strong

indicators of organ failure: troponin I is a specific biomarker of

myocardial infarction; peak inspiratory pressure, O2 L/%, TV/kg

IBW, plateau pressure, PEEP and tidal volume indicate mechanical

ventilation (on account of respiratory failure); PTT, ALT (SGPT),

AST (SGOT) and alkaline phosphatase suggest liver disease; and

Figure 7: Top 25 most important features to the TPC model

in the eICU dataset.

high BUN and bilirubin levels point towards kidney failure. Addi-

tionally we see infection markers such as lactate, basophils and

eosinophils which could indicate sepsis. Both multi-organ failure

and sepsis are known causes of extended LoS in the ICU [2].

7.3 Evaluation by Use-Case

We have reported aggregate performance metrics indicating strong

performance of the TPC model for overall LoS forecasting. In this

section, we provide further evaluations tailored to two potential

users – an individual ICU clinician, and a bed manager for the unit.

7.3.1 Individual-level Reliability. Although aggregate measures of

performance are typically reported, these can mask underlying

variability in model performance. Such variability can undermine

trust or result in unsafe application of systems [43]. In this section,

we think of a clinician who wishes to interpret the prediction of the

system for an individual patient. We break down the aggregate per-

formance metrics based on factors which will be readily-available at

the time of the prediction. Specifically, we visualise the MAPE (cho-

sen for its interpretability) as a function of the time since admission

and the predicted remaining LoS.

Figure 8 shows an example for the TPC model on eICU. We can

see that high predicted remaining LoS on the first day of a patient’s

stay can be quite unreliable, with performance rapidly improving

over time. Additional investigation revealed these initial predic-

tions to be under-predictions, indicating that it is challenging to

accurately forecast very long LoS for patients on their first day. The

long tail of LoS in the dataset reflects the abundance of short-stay

patients. The model therefore seems to wait for 1-2 days of data to

justify a long LoS prediction. The system can therefore be equipped

with instructions indicating that a high predicted remaining LoS

on the first day should not be acted upon. This could complement

information provided on a model card [28, 43].

7.3.2 ICU-level Bed Management. From the perspective of a bed

manager, aggregate performance of the model is important: an over-

prediction for one patient could be offset by an under-prediction for
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Figure 8: Mean absolute percentage error as a function of

days since admission and predicted remaining LoS on the

eICU dataset.

another, resulting in the same net bed availability. To investigate

this, we performed a simulation study. We ran 500 ICU simulations

by randomly selecting 16 examples from the eICU test set to form

a ‘virtual cohort’. The number 16 was chosen because US hospi-

tals have, on average, 24 ICU beds [56] with an occupancy rate

of 68% [13]. Figure 9 shows the number of patients remaining in

the ICU (of the selected cohort; we do not visualise incoming ICU

admissions) using their true remaining LoS (blue). We compute the

error (red) between the predictions (green) and true values. The

model is well calibrated when predicting patients who are going to

stay for at least 1 day. After this, the model tends to under-predict

the occupancy by approximately 0.8 patients, corresponding to a

small bias towards under-estimating the remaining LoS.

Figure 9: ICU simulation. We show the number of patients

remaining in the ICU over time from an initial cohort of

16 random eICU patients from 500 simulations. The shaded

regions show the standard deviation across the runs. ‘Error’

is calculated from ‘True’ minus ‘Predictions’.

8 DISCUSSION

We have shown that the TPCmodel outperforms all baseline models

in all task settings (LoS, mortality or multitask) on both the eICU

and MIMIC-IV datasets. To explain the success of TPC, we start by

examining the parallel architectures in the TPC model. Each compo-

nent has been designed to extract different information: trends from

the temporal convolutions and inter-feature relationships from the

pointwise convolutions. The eICU ablation studies reveal that the

temporal element is more important, but we stress that their contri-

butions are complementary since the best performance is achieved

when they are used together.

Next, we highlight that the temporal-only model far outperforms

its most direct comparison, the CW LSTM, on all metrics. Theoreti-

cally, they are well matched because they both have feature-specific

parameters but are restricted from learning cross-feature interac-

tions. To begin to explain this, we consider how the information

flows through themodel. The temporal-only model can directly step

across large time gaps, whereas the CW LSTM is forced to progress

one timestep at a time. This gives the CW LSTM the harder task

of remembering information across a noisy EHR with distracting

signals of varying frequency. In addition, the temporal-only model

can tune its receptive fields for improved processing of each feature

thanks to the skip connections (which are not present in the CW

LSTM).

The difference in performance between the temporal-only model

with and without weight sharing provides strong evidence that

assigning independent parameters to each feature is important.

Some EHR time series are irregularly and sparsely sampled, and

can exhibit considerable variability in the temporal frequencies

within the underlying data (evident in Figure 5). This presents a

challenge for any model, especially if it is constrained to learn one

set of parameters to suit all features. The relative success of the

CW LSTM over the standard LSTM when processing disparate time

series – but not similar – also lends weight to this theory.

However, the assignment of independent parameters to each

feature does not explain all the successes of TPC e.g. the TPC model

can process disparate time series and gain more marginal perfor-

mance than the CW LSTM (Table 11). We need to consider that

periodicity is a key property of EHR data – this is true in both the

sampling patterns and in the underlying biology e.g. medication

schedules, sleep cycles, meals etc. The temporal component of the

TPC model is the only architecture with an inherent periodic struc-

ture (from the stacked temporal filters) which makes it much easier

to learn EHR trends. By comparison, a single attention head in the

Transformer model does not look at timepoints a fixed distance

apart, but can take an arbitrary form. This is a strength for natu-

ral language processing, given the variety of sentence structures

possible, but it does not help the Transformer to process EHRs.

Additionally, we have shown that the TPC model outperforms

baselines on in-hospital mortality both as a standalone task and in

combination with LoS. The performance on both mortality and LoS

is significantly better in the multitask setting (this is consistent with

past works [14, 44]) because multitask learning helps to regularise

the model and reduce the chance of overfitting [41]. Adding further

tasks may be a valid strategy to improve LoS performance.
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Finally, we reiterate that using MSLE loss instead of MSE greatly

mitigates for positive skew in the LoS task, and this benefit is not

model-specific (all of the baselines perform better with MSLE – see

Table 13). This demonstrates that careful consideration of the task

– as well as the data and model – is an important step towards

building useful tools in healthcare.

8.1 Limitations and Future Work

Our work has several limitations. We know that LoS is heavily influ-

enced by operational factors, and clinical practices can change over

time [22]. Capacity to maintain performance over time is an im-

portant consideration before a system could be used in practice. In

future work, it would be instructive to test how quickly the models

become out-of-date by reserving more recent data as a test set [30].

Although we have included a large set of baselines, we acknowledge

that a more exhaustive comparison could be performed, for exam-

ple comparing by Gaussian Processes [33] or ODE-RNNs [8, 40]

for handling irregularly sampled time-series. Finally, although we

have motivated our study by bed management, this work describes

a methodological proof of concept and does not constitute a real

clinical system. Prospective study and integration into a real-world

EHR is necessary to demonstrate real-world benefit, both of which

pose their own challenges [36, 42].

In future work, we would like to investigate why the TPC model

gains more from the multitask setting than the other models. It

seems likely that it is related to additional regularisation provided

by the mortality task, but further investigation is needed to confirm

our speculations.

9 CONCLUSION

We have proposed and evaluated a new deep learning architecture,

which we call ‘Temporal Pointwise Convolution’ (TPC). TPC com-

bines temporal convolutional layers with pointwise convolutions

to extract temporal and inter-feature information. We have shown

that the TPC model is well-equipped to analyse EHR time series

containing missingness, differing frequencies and sparse sampling.

We believe that the following four aspects contribute the most to

its success:

(1) The combination of two complementary architectures that

are able to extract different features, both of which are im-

portant.

(2) The ability to step over large time gaps.

(3) The capacity to specialise processing to each feature (includ-

ing the freedom to select the receptive field size for each).

(4) The rigid spacing of the temporal filters, making it easy to

derive trends.

From a clinical perspective, we have contributed to the advancement

of LoS prediction models, a prerequisite for automated bed manage-

ment tools. Improving the practice of bed management promises

cost reduction [13] and better resource allocation [27] worldwide.

From a computational perspective, we have provided key insights

for retrospective EHR studies, particularly where LSTMs are the cur-

rently model of choice. In the broader context of machine learning

for healthcare we have demonstrated that careful consideration of

the complexities of health data is necessary to gain state-of-the-art

performance in these tasks.
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